Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 279: 116875, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33770650

RESUMO

Perfluorinated alkyl substances (PFASs) are global, persistent, and toxic contaminants. We assessed PFAS concentrations in green (Chelonia mydas) and hawksbill (Eretmochelys imbricata) turtles from the North Pacific. Fifteen compounds were quantified via liquid chromatography tandem mass spectrometry from 62 green turtle and 6 hawksbill plasma samples from Hawai'i, Palmyra Atoll, and the Northern Marianas Islands. Plasma from 14 green turtles severely afflicted with fibropapillomatosis, and eggs from 12 Hawaiian hawksbill nests from 7 females were analyzed. Perfluorooctane sulfonate (PFOS) predominated in green turtle plasma; perfluorononanoic acid (PFNA) predominated in hawksbill tissues. Concentrations were greater in hawksbill than green turtle plasma (p < 0.05), related to trophic differences. Green turtle plasma PFOS concentrations were related to human populations from highest to lowest: Hawai'i, Marianas, Palmyra. Influence on fibropapillomatosis was not evident. PFASs were maternally transferred to hawksbill eggs, with decreasing concentrations with distance from airports and with clutch order from one female. A risk assessment of PFOS showed concern for immunosuppression in Kailua green turtles and alarming concern for hawksbill developmental toxicity. Perfluoroundecanoic (PFUnA) and perfluorotridecanoic (PFTriA) acid levels were correlated with reduced emergence success (p < 0.05). Studies to further examine PFAS effects on sea turtle development would be beneficial.


Assuntos
Fluorocarbonos , Tartarugas , Animais , Feminino , Havaí
2.
Ecol Evol ; 6(8): 2378-89, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27110350

RESUMO

High seas oceanic ecosystems are considered important habitat for juvenile sea turtles, yet much remains cryptic about this important life-history period. Recent progress on climate and fishery impacts in these so-called lost years is promising, but the developmental biogeography of hawksbill sea turtles (Eretmochelys imbricata) has not been widely described in the Pacific Ocean. This knowledge gap limits the effectiveness of conservation management for this globally endangered species. We address this with 30 years of stranding observations, 20 years of bycatch records, and recent simulations of natal dispersal trajectories in the Hawaiian Archipelago. We synthesize the analyses of these data in the context of direct empirical observations, anecdotal sightings, and historical commercial harvests from the insular Pacific. We find hawksbills 0-4 years of age, measuring 8-34 cm straight carapace length, are found predominantly in the coastal pelagic waters of Hawaii. Unlike other species, we find no direct evidence of a prolonged presence in oceanic habitats, yet satellite tracks of passive drifters (simulating natal dispersal) and our small sample sizes suggest that an oceanic phase for hawksbills cannot be dismissed. Importantly, despite over 600 million hooks deployed and nearly 6000 turtle interactions, longline fisheries have never recorded a single hawksbill take. We address whether the patterns we observe are due to population size and gear selectivity. Although most sea turtle species demonstrate clear patterns of oceanic development, hawksbills in the North Pacific may by contrast occupy a variety of ecosystems including coastal pelagic waters and shallow reefs in remote atolls. This focuses attention on hazards in these ecosystems - entanglement and ingestion of marine debris - and perhaps away from longline bycatch and decadal climate regimes that affect sea turtle development in oceanic regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA