Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(28): 12343-12355, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38943591

RESUMO

Smoke from wildfires poses a substantial threat to health in communities near and far. To mitigate the extent and potential damage of wildfires, prescribed burning techniques are commonly employed as land management tools; however, they introduce their own smoke-related risks. This study investigates the impact of prescribed fires on daily average PM2.5 and maximum daily 8-h averaged O3 (MDA8-O3) concentrations and estimates premature deaths associated with short-term exposure to prescribed fire PM2.5 and MDA8-O3 in Georgia and surrounding areas of the Southeastern US from 2015 to 2020. Our findings indicate that over the study domain, prescribed fire contributes to average daily PM2.5 by 0.94 ± 1.45 µg/m3 (mean ± standard deviation), accounting for 14.0% of year-round ambient PM2.5. Higher average daily contributions were predicted during the extensive burning season (January-April): 1.43 ± 1.97 µg/m3 (20.0% of ambient PM2.5). Additionally, prescribed burning is also responsible for an annual average increase of 0.36 ± 0.61 ppb in MDA8-O3 (approximately 0.8% of ambient MDA8-O3) and 1.3% (0.62 ± 0.88 ppb) during the extensive burning season. We estimate that short-term exposure to prescribed fire PM2.5 and MDA8-O3 could have caused 2665 (95% confidence interval (CI): 2249-3080) and 233 (95% CI: 148-317) excess deaths, respectively. These results suggest that smoke from prescribed burns increases the mortality. However, refraining from such burns may escalate the risk of wildfires; therefore, the trade-offs between the health impacts of wildfires and prescribed fires, including morbidity, need to be taken into consideration in future studies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios , Material Particulado , Georgia , Humanos , Mortalidade Prematura , Incêndios Florestais , Fumaça
2.
Environ Sci Technol ; 58(1): 280-290, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153403

RESUMO

While human mobility plays a crucial role in determining ambient air pollution exposures and health risks, research to date has assessed risks on the basis of almost solely residential location. Here, we leveraged a database of ∼128-144 million workers in the United States and published ambient PM2.5 data between 2011 and 2018 to explore how incorporating information on both workplace and residential location changes our understanding of disparities in air pollution exposure. In general, we observed higher workplace exposures relative to home exposures, as well as increased exposures for nonwhite and less educated workers relative to the national average. Workplace exposure disparities were higher among racial and ethnic groups and job types than by income, education, age, and sex. Not considering workplace exposures can lead to systematic underestimations in disparities in exposure among these subpopulations. We also quantified the error in assigning workers home instead of a weighted home-and-work exposure. We observed that biases in associations between PM2.5 and health impacts by using home instead of home-and-work exposure were the highest among urban, younger populations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Estados Unidos , Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Poluição do Ar/análise , Bases de Dados Factuais , Material Particulado/análise
3.
Environ Res ; 262(Pt 1): 119791, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151555

RESUMO

BACKGROUND: Many climate mitigation policies to reduce transportation emissions have public health benefits related to ambient air pollution. However, few health analyses consider the equity implications of alternative policies. Equity can be conceptualized in many different ways that may be relevant to communities, decision-makers, and other stakeholders. OBJECTIVES: To evaluate alternative transportation emissions reduction scenarios across the northeastern United States considering population exposure reductions and multiple equity constructs. METHODS: We developed four quantitative indicators reflecting equity constructs that aligned with stakeholder perspectives, including racial/ethnic exposure inequities, proportion of benefits in environmental justice communities, distribution of benefits among participating states, and rural/urban share of benefits. We analyzed numerous transportation emissions reduction scenarios for directly emitted fine particulate matter (primary PM2.5) covering 12 Northeast states and the District of Columbia. We used the Community Multiscale Air Quality model with the decoupled direct method to estimate the reduction in population-weighted primary PM2.5 exposure and the impact on equity for each scenario. RESULTS: Scenarios that yielded greater reductions in population-weighted primary PM2.5 exposure generally emphasized emissions reductions in urban areas or states with large urban centers, with a more than threefold difference in benefits across scenarios. The higher exposure-benefit scenarios typically also had greater reductions in racial/ethnic exposure inequities but led to higher between-state or rural/urban inequality. Scenarios that targeted uniform percentage emission reductions from light or heavy-duty trucks best addressed rural/urban inequalities but led to the smallest reductions in racial/ethnic inequity. CONCLUSION: There are intrinsic tradeoffs among equity constructs, where focusing resources on distributing benefits across states or between urban and rural populations could come at the expense of less reduction in racial/ethnic exposure inequities or in environmental justice communities. Future health benefits analyses should incorporate multiple equity indicators that reflect different stakeholder perspectives and articulate the underlying constructs and tradeoffs.

4.
JAMA Netw Open ; 7(3): e2354607, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38427355

RESUMO

Importance: The association between short-term exposure to air pollution and mortality has been widely documented worldwide; however, few studies have applied causal modeling approaches to account for unmeasured confounders that vary across time and space. Objective: To estimate the association between short-term changes in fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations and changes in daily all-cause mortality rates using a causal modeling approach. Design, Setting, and Participants: This cross-sectional study used air pollution and mortality data from Jiangsu, China; California; central-southern Italy; and Germany with interactive fixed-effects models to control for both measured and unmeasured spatiotemporal confounders. A total of 8 963 352 deaths in these 4 regions from January 1, 2015, to December 31, 2019, were included in the study. Data were analyzed from June 1, 2021, to October 30, 2023. Exposure: Day-to-day changes in county- or municipality-level mean PM2.5 and NO2 concentrations. Main Outcomes and Measures: Day-to-day changes in county- or municipality-level all-cause mortality rates. Results: Among the 8 963 352 deaths in the 4 study regions, a 10-µg/m3 increase in daily PM2.5 concentration was associated with an increase in daily all-cause deaths per 100 000 people of 0.01 (95% CI, 0.001-0.01) in Jiangsu, 0.03 (95% CI, 0.004-0.05) in California, 0.10 (95% CI, 0.07-0.14) in central-southern Italy, and 0.04 (95% CI, 0.02- 0.05) in Germany. The corresponding increases in mortality rates for a 10-µg/m3 increase in NO2 concentration were 0.04 (95% CI, 0.03-0.05) in Jiangsu, 0.03 (95% CI, 0.01-0.04) in California, 0.10 (95% CI, 0.05-0.15) in central-southern Italy, and 0.05 (95% CI, 0.04-0.06) in Germany. Significant effect modifications by age were observed in all regions, by sex in Germany (eg, 0.05 [95% CI, 0.03-0.06] for females in the single-pollutant model of PM2.5), and by urbanicity in Jiangsu (0.07 [95% CI, 0.04-0.10] for rural counties in the 2-pollutant model of NO2). Conclusions and Relevance: The findings of this cross-sectional study contribute to the growing body of evidence that increases in short-term exposures to PM2.5 and NO2 may be associated with increases in all-cause mortality rates. The interactive fixed-effects model, which controls for unmeasured spatial and temporal confounders, including unmeasured time-varying confounders in different spatial units, can be used to estimate associations between changes in short-term exposure to air pollution and changes in health outcomes.


Assuntos
Poluentes Atmosféricos , Material Particulado , Feminino , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Dióxido de Nitrogênio/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Estudos Transversais , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
5.
Eco Environ Health ; 3(2): 154-164, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38646097

RESUMO

Despite the existence of many interventions to mitigate or adapt to the health effects of climate change, their effectiveness remains unclear. Here, we introduce the Comprehensive Evaluation Framework for Intervention on Health Effects of Ambient Temperature to evaluate study designs and effects of intervention studies. The framework comprises three types of interventions: proactive, indirect, and direct, and four categories of indicators: classification, methods, scope, and effects. We trialed the framework by an evaluation of existing intervention studies. The evaluation revealed that each intervention has its own applicable characteristics in terms of effectiveness, feasibility, and generalizability scores. We expanded the framework's potential by offering a list of intervention recommendations in different scenarios. Future applications are then explored to establish models of the relationship between study designs and intervention effects, facilitating effective interventions to address the health effects of ambient temperature under climate change.

6.
Environ Int ; 185: 108416, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38394913

RESUMO

We evaluated the sensitivity of estimated PM2.5 and NO2 health impacts to varying key input parameters and assumptions including: 1) the spatial scale at which impacts are estimated, 2) using either a single concentration-response function (CRF) or using racial/ethnic group specific CRFs from the same epidemiologic study, 3) assigning exposure to residents based on home, instead of home and work locations for the state of Colorado. We found that the spatial scale of the analysis influences the magnitude of NO2, but not PM2.5, attributable deaths. Using county-level predictions instead of 1 km2 predictions of NO2 resulted in a lower estimate of mortality attributable to NO2 by âˆ¼ 50 % for all of Colorado for each year between 2000 and 2020. Using an all-population CRF instead of racial/ethnic group specific CRFs results in a 130 % higher estimate of annual mortality attributable for the white population and a 40 % and 80 % lower estimate of mortality attributable to PM2.5 for Black and Hispanic residents, respectively. Using racial/ethnic group specific CRFs did not result in a different estimation of NO2 attributable mortality for white residents, but led to âˆ¼ 50 % lower estimates of mortality for Black residents, and 290 % lower estimate for Hispanic residents. Using NO2 based on home instead of home and workplace locations results in a smaller estimate of annual mortality attributable to NO2 for all of Colorado by 2 % each year and 0.3 % for PM2.5. Our results should be interpreted as an exercise to make methodological recommendations for future health impact assessments of pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Colorado/epidemiologia , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
7.
Geohealth ; 8(3): e2023GH000996, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38419836

RESUMO

Access to urban natural space, including blue and greenspace, is associated with improved health. In 2021, the C40 Cities Climate Leadership Group set 2030 Urban Nature Declaration (UND) targets: "Quality Total Cover" (30% green area within each city) and "Equitable Spatial Distribution" (70% of the population living close to natural space). We evaluate progress toward these targets in the 96 C40 cities using globally available, high-resolution data sets for landcover and normalized difference vegetation index (NDVI). We use the European Space Agency (ESA)'s WorldCover data set to define greenspace with discrete landcover categories and ESA's Sentinel-2A to calculate NDVI, adding the "open water" landcover category to characterize total natural space. We compare 2020 levels of urban green and natural space to the two UND targets and predict the city-specific NDVI level consistent with the UND targets using linear regressions. The 96-city mean NDVI was 0.538 (range: 0.148, 0.739). Most (80%) cities meet the Quality Total Cover target, and nearly half (47%) meet the Equitable Spatial Distribution target. Landcover-measured greenspace and total natural space were strong (mean R 2 = 0.826) and moderate (mean R 2 = 0.597) predictors of NDVI and our NDVI-based natural space proximity measure, respectively. The 96-city mean predicted NDVI value of meeting the UND targets was 0.478 (range: 0.352-0.565) for Quality Total Cover and 0.660 (range: 0.498-0.767) for Equitable Spatial Distribution. Our translation of the area- and access-based metrics common in urban natural space targets into the NDVI metric used in epidemiology allows for quantifying the health benefits of achieving such targets.

8.
Environ Health Insights ; 18: 11786302241258587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863688

RESUMO

Particulate matter (PM) exposure is associated with adverse health outcomes, including respiratory illness. A large fraction of exposure to airborne contaminants occurs in the home. This study, conducted over 5 months in a community with high asthma rates (Chelsea, MA, USA), investigated the use of portable air cleaners (PACs) to reduce indoor PM. Seven asthma-affected households participated, receiving a PAC (Austin Air Health Mate HEPA filter), a QuantAQ sensor to measure PM1, PM2.5, PM10 (µg/m3), and a HOBO plug-load data logger to track PAC usage. Results describe hourly and daily PM concentrations and PAC usage for each household. Hourly average PM concentrations decreased when PACs were turned on (vs. when they were turned off) across households during the study period: PM1 decreased by 0.46 µg/m3, PM2.5 decreased by 0.69 µg/m3, and PM10 decreased by 3.22 µg/m3. PAC usage varied for each household, including constant usage in one household and only usage at certain times of day in others. Higher filtration settings led to lower PM, with significant reductions in some, but not all, homes. Our findings highlight some difficulties in implementing household PAC interventions, yet also provide evidence to support household-level interventions to reduce PM and other indoor sources of air pollution. We also highlight academic-community partnerships as contributing to evidence-based solutions.

9.
Environ Int ; 187: 108668, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640613

RESUMO

COVID-19 lockdowns reduced nitrogen dioxide (NO2) and fine particulate matter (PM2.5) emissions in many countries. We aim to quantify the changes in these pollutants and to assess the attributable changes in mortality in Jiangsu, China; California, U.S.; Central-southern Italy; and Germany during COVID-19 lockdowns in early 2020. Accounting for meteorological impacts and air pollution time trends, we use a machine learning-based meteorological normalization technique and the difference-in-differences approach to quantify the changes in NO2 and PM2.5 concentrations due to lockdowns. Using region-specific estimates of the association between air pollution and mortality derived from a causal modeling approach using data from 2015 to 2019, we assess the changes in mortality attributable to the air pollution changes caused by the lockdowns in early 2020. During the lockdowns, NO2 reductions avoided 1.41 (95% empirical confidence interval [eCI]: 0.94, 1.88), 0.44 (95% eCI: 0.17, 0.71), and 4.66 (95% eCI: 2.03, 7.44) deaths per 100,000 people in Jiangsu, China; California, U.S.; and Central-southern Italy, respectively. Mortality benefits attributable to PM2.5 reductions were also significant, albeit of a smaller magnitude. For Germany, the mortality benefits attributable to NO2 changes were not significant (0.11; 95% eCI: -0.03, 0.25), and an increase in PM2.5 concentrations was associated with an increase in mortality of 0.35 (95% eCI: 0.22, 0.48) deaths per 100,000 people during the lockdown. COVID-19 lockdowns overall improved air quality and brought attributable health benefits, especially associated with NO2 improvements, with notable heterogeneity across regions. This study underscores the importance of accounting for local characteristics when policymakers adapt successful emission control strategies from other regions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Dióxido de Nitrogênio , Material Particulado , COVID-19/mortalidade , Poluição do Ar/estatística & dados numéricos , Humanos , Material Particulado/análise , Itália/epidemiologia , Alemanha/epidemiologia , Dióxido de Nitrogênio/análise , Poluentes Atmosféricos/análise , China/epidemiologia , Mortalidade/tendências , California/epidemiologia , SARS-CoV-2
10.
PNAS Nexus ; 3(4): pgae142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38689709

RESUMO

China is one of the largest producers and consumers of coal in the world. The National Action Plan on Air Pollution Prevention and Control in China (2013-2017) particularly aimed to reduce emissions from coal combustion. Here, we show whether the acute health effects of PM2.5 changed from 2013 to 2018 and factors that might account for any observed changes in the Beijing-Tianjin-Hebei (BTH) and the surrounding areas where there were major reductions in PM2.5 concentrations. We used a two-stage analysis strategy, with a quasi-Poisson regression model and a random effects meta-analysis, to assess the effects of PM2.5 on mortality in the 47 counties of BTH. We found that the mean daily PM2.5 levels and the SO42- component ratio dramatically decreased in the study period, which was likely related to the control of coal emissions. Subsequently, the acute effects of PM2.5 were significantly decreased for total and circulatory mortality. A 10 µg/m3 increase in PM2.5 concentrations was associated with a 0.16% (95% CI: 0.08, 0.24%) and 0.02% (95% CI: -0.09, 0.13%) increase in mortality from 2013 to 2015 and from 2016 to 2018, respectively. The changes in air pollution sources or PM2.5 components appeared to have played a core role in reducing the health effects. The air pollution control measures implemented recently targeting coal emissions taken in China may have resulted in significant health benefits.

11.
Environ Int ; 184: 108470, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324930

RESUMO

From 2013 to 2019, a series of air pollution control actions significantly reduced PM2.5 pollution in China. Control actions included changes in activity levels, structural adjustment (SA) policy, energy and material saving (EMS) policy, and end-of-pipe (EOP) control in several sources, which have not been systematically studied in previous studies. Here, we integrate an emission inventory, a chemical transport model, a health impact assessment model, and a scenario analysis to quantify the contribution of each control action across a range of major emission sources to the changes in PM2.5 concentrations and associated mortality in China from 2013 to 2019. Assuming equal toxicity of PM2.5 from all the sources, we estimate that PM2.5-related mortality decreased from 2.52 (95 % confidence interval, 2.13-2.88) to 1.94 (1.62-2.24) million deaths. Anthropogenic emission reductions and declining baseline incidence rates significantly contributed to health benefits, but population aging partially offset their impact. Among the major sources, controls on power plants and industrial boilers were responsible for the highest reduction in PM2.5-related mortality (∼80 %), followed by industrial processes (∼40 %), residential combustion (∼40 %), and transportation (∼30 %). However, considering the potentially higher relative risks of power plant PM2.5, the adverse effects avoided by their control could be ∼2.4 times the current estimation. Our power plant sensitivity analyses indicate that future estimates of source-specific PM2.5 health effects should incorporate variations in individual source PM2.5 effect coefficients when available. As for the control actions, while activity levels increased for most sources, SA policy significantly reduced the emissions in residential combustion and industrial boilers, and EOP control dominated the contribution in health benefits in most sources except residential combustion. Considering the emission reduction potential by source and control actions in 2019, our results suggest that promoting clean energy in residential combustion and enforcing more stringent EOP control in the iron and steel industry should be prioritized in the future.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Monitoramento Ambiental/métodos , China
12.
One Earth ; 7(2): 325-335, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38420618

RESUMO

Short-term exposure to ground-level ozone in cities is associated with increased mortality and is expected to worsen with climate and emission changes. However, no study has yet comprehensively assessed future ozone-related acute mortality across diverse geographic areas, various climate scenarios, and using CMIP6 multi-model ensembles, limiting our knowledge on future changes in global ozone-related acute mortality and our ability to design targeted health policies. Here, we combine CMIP6 simulations and epidemiological data from 406 cities in 20 countries or regions. We find that ozone-related deaths in 406 cities will increase by 45 to 6,200 deaths/year between 2010 and 2014 and between 2050 and 2054, with attributable fractions increasing in all climate scenarios (from 0.17% to 0.22% total deaths), except the single scenario consistent with the Paris Climate Agreement (declines from 0.17% to 0.15% total deaths). These findings stress the need for more stringent air quality regulations, as current standards in many countries are inadequate.

13.
J Transp Health ; 142019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38854424

RESUMO

Introduction: Spending a few hours to cool down in a cooling center reduces the impact of heat on health. But limited or lack of accessibility of these facilities is often a barrier to their utilization. The objective of this study was to assess accessibility of the cooling centers to heat-vulnerable populations in New York State (NYS) by various modes of transportation. Methods: We estimate the proximity of 377 cooling centers to general and heat-vulnerable populations in NYS (excluding New York City (NYC)) and determine their accessibility via walking, public transportation and driving. Distances between tract populations and nearest cooling center, and between cooling centers and public transportation stops were estimated. Accessibility in four metropolitan regions was determined via public transportation while accessibility in heat-vulnerable rural areas was estimated via driving. Results: Distances to nearest cooling center ranged from 0 to 53.2 miles with only a third of NYS population within walking distance (0.5 miles) of a cooling center. About 51% of heat-vulnerable tracts were within 0.5 miles, with an average distance of 2.4 miles to the nearest cooling center. Within the four metro politan regions 80% of cooling centers within 0.5 miles of a public transportation stop. All cooling centers in heat-vulnerable tracts were accessible via public transportation. In rural heat-vulnerable tracts, driving distances averaged at about 18 miles. Conclusions: In urban areas many residents were not within walking distance of a cooling center, but most, and nearly all in the most heat-vulnerable areas, were within walking distance of public transportation to a cooling center. In rural locations distances were longer, and accessibility is a greater issue. Cooling centers can be a valuable resource for general and heat-vulnerable populations during an extreme heat event. When planning and implementing cooling centers, it is therefore important to improve accessibility and address other barriers that can hamper their utilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA