Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Bioessays ; 40(8): e1800005, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29901833

RESUMO

Fused, elongated mitochondria are more efficient in generating ATP than fragmented mitochondria. In diverse C. elegans longevity pathways, increased levels of fused mitochondria are associated with lifespan extension. Blocking mitochondrial fusion in these animals abolishes their extended longevity. The long-lived C. elegans vhl-1 mutant is an exception that does not have increased fused mitochondria, and is not dependent on fusion for longevity. Loss of mammalian VHL upregulates alternate energy generating pathways. This suggests that mitochondrial fusion facilitates longevity in C. elegans by increasing energy metabolism. In diverse animals, ATP levels broadly decreases with age. Substantial evidence supports the theory that increasing or maintaining energy metabolism promotes the survival of older animals. Increased ATP levels in older animals allow energy-intensive repair and homeostatic mechanisms such as proteostasis that act to prevent cellular aging. These observations support the emerging paradigm that maintaining energy metabolism promotes the survival of older animals.


Assuntos
Caenorhabditis elegans/fisiologia , Metabolismo Energético , Longevidade/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/genética , Proteínas Culina/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial
2.
Dev Biol ; 432(2): 215-221, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29066181

RESUMO

Dafachronic acid (DA) is a bile acid-like steroid hormone that regulates dauer formation, heterochrony, and lifespan in C. elegans. Here, we describe that DA is an inhibitor of C. elegans germ stem cell proliferation in adult hermaphrodites. Using a C. elegans germ cell primary culture system, we show that DA inhibits the proliferation of germ cells in vitro. Exogenous DA reduces the frequency of large tumors in adult tumorous germline mutants and decreases the proliferation of wild-type germ stem cells in adult hermaphrodites. In contrast, DA has no appreciable effect on the proliferation of larval-stage germ cells in wild type. The inhibition of adult germ cell proliferation by DA requires its canonical receptor DAF-12. Blocking DA production by inactivating the cytochrome P450 DAF-9 increases germ cell proliferation in wild-type adult hermaphrodites and the frequency of large tumors in germline tumorous mutants, suggesting that DA inhibits the rate of germ cell proliferation under normal growth conditions.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Colestenos/metabolismo , Células-Tronco Germinativas Adultas/citologia , Animais , Ácidos e Sais Biliares , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proliferação de Células/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Germinativas/citologia , Células Germinativas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais
3.
Nature ; 467(7312): 218-22, 2010 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-20829795

RESUMO

In most eukaryotic cells, subsets of microtubules are adapted for specific functions by post-translational modifications (PTMs) of tubulin subunits. Acetylation of the epsilon-amino group of K40 on alpha-tubulin is a conserved PTM on the luminal side of microtubules that was discovered in the flagella of Chlamydomonas reinhardtii. Studies on the significance of microtubule acetylation have been limited by the undefined status of the alpha-tubulin acetyltransferase. Here we show that MEC-17, a protein related to the Gcn5 histone acetyltransferases and required for the function of touch receptor neurons in Caenorhabditis elegans, acts as a K40-specific acetyltransferase for alpha-tubulin. In vitro, MEC-17 exclusively acetylates K40 of alpha-tubulin. Disruption of the Tetrahymena MEC-17 gene phenocopies the K40R alpha-tubulin mutation and makes microtubules more labile. Depletion of MEC-17 in zebrafish produces phenotypes consistent with neuromuscular defects. In C. elegans, MEC-17 and its paralogue W06B11.1 are redundantly required for acetylation of MEC-12 alpha-tubulin, and contribute to the function of touch receptor neurons partly via MEC-12 acetylation and partly via another function, possibly by acetylating another protein. In summary, we identify MEC-17 as an enzyme that acetylates the K40 residue of alpha-tubulin, the only PTM known to occur on the luminal surface of microtubules.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Tubulina (Proteína)/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Acetilação , Animais , Caenorhabditis elegans/metabolismo , Linhagem Celular , Dipodomys , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Tetrahymena/metabolismo , Tato , Tubulina (Proteína)/química , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
4.
Genetics ; 225(1)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37433110

RESUMO

Cullin-RING ubiquitin ligases (CRLs) are the largest class of ubiquitin ligases with diverse functions encompassing hundreds of cellular processes. Inactivation of core components of the CRL4 ubiquitin ligase produces a germ cell defect in Caenorhabditis elegans that is marked by abnormal globular morphology of the nucleolus and fewer germ cells. We identified DDB1 Cullin4 associated factor (DCAF)-1 as the CRL4 substrate receptor that ensures proper germ cell nucleolus morphology. We demonstrate that the dcaf-1 gene is the ncl-2 (abnormal nucleoli) gene, whose molecular identity was not previously known. We also observed that CRL4DCAF-1 is required for male tail development. Additionally, the inactivation of CRL4DCAF-1 results in a male-specific lethality in which a percentage of male progeny arrest as embryos or larvae. Analysis of the germ cell nucleolus defect using transmission electron microscopy revealed that dcaf-1 mutant germ cells possess significantly fewer ribosomes, suggesting a defect in ribosome biogenesis. We discovered that inactivation of the sperm-fate specification gene fog-1 (feminization of the germ line-1) or its protein-interacting partner, fog-3, rescues the dcaf-1 nucleolus morphology defect. Epitope-tagged versions of both FOG-1 and FOG-3 proteins are aberrantly present in adult dcaf-1(RNAi) animals, suggesting that DCAF-1 negatively regulates FOG-1 and FOG-3 expression. Murine CRL4DCAF-1 targets the degradation of the ribosome assembly factor periodic trptophan protein 1 (PWP1). We observed that the inactivation of Caenorhabditis elegansDCAF-1 increases the nucleolar levels of PWP1 in the germ line, intestine, and hypodermis. Reducing the level of PWP-1 rescues the dcaf-1 mutant defects of fewer germ cell numbers and abnormal nucleolus morphology, suggesting that the increase in PWP-1 levels contributes to the dcaf-1 germline defect. Our results suggest that CRL4DCAF-1 has an evolutionarily ancient role in regulating ribosome biogenesis including a conserved target in PWP1.


Assuntos
Caenorhabditis elegans , Proteínas Culina , Masculino , Animais , Camundongos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Ubiquitina/metabolismo , Sêmen/metabolismo , Células Germinativas/metabolismo , Fatores de Transcrição/genética
5.
Dev Cell ; 13(1): 127-39, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17609115

RESUMO

In Caenorhabditis elegans, the Gli-family transcription factor TRA-1 is the terminal effector of the sex-determination pathway. TRA-1 activity inhibits male development and allows female fates. Genetic studies have indicated that TRA-1 is negatively regulated by the fem-1, fem-2, and fem-3 genes. However, the mechanism of this regulation has not been understood. Here, we present data that TRA-1 is regulated by degradation mediated by a CUL-2-based ubiquitin ligase complex that contains FEM-1 as the substrate-recognition subunit, and FEM-2 and FEM-3 as cofactors. CUL-2 physically associates with both FEM-1 and TRA-1 in vivo, and cul-2 mutant males share feminization phenotypes with fem mutants. CUL-2 and the FEM proteins negatively regulate TRA-1 protein levels in C. elegans. When expressed in human cells, the FEM proteins interact with human CUL2 and induce the proteasome-dependent degradation of TRA-1. This work demonstrates that the terminal step in C. elegans sex determination is controlled by ubiquitin-mediated proteolysis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Ciclo Celular/metabolismo , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Processos de Determinação Sexual , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas Culina/química , Proteínas Culina/genética , Transtornos do Desenvolvimento Sexual , Dados de Sequência Molecular , Mutação , Fenótipo , Fosfoproteínas Fosfatases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Especificidade por Substrato , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
6.
Trends Endocrinol Metab ; 33(3): 159-174, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35094917

RESUMO

Folates are B vitamins that function in one-carbon metabolism. Folate receptors are one of three major types of folate transporters. The folate receptors FOLR1 and FOLR2 are overexpressed in multiple cancers. The overexpression of FOLR1 is often associated with increased cancer progression and poor patient prognosis. There is emerging evidence that FOLR1 is involved in signaling pathways that are independent of one-carbon metabolism. Recent publications implicate a direct role of FOLR1 in three signaling pathways: JAK-STAT3, ERK1/2, and as a transcription factor. Six other signaling pathways have been proposed to include FOLR1, but these currently lack sufficient data to infer a direct signaling role for FOLR1. We discuss the data that support noncanonical roles for FOLR1, and its limitations.


Assuntos
Receptor 2 de Folato , Neoplasias , Carbono/metabolismo , Receptor 1 de Folato/genética , Ácido Fólico/metabolismo , Humanos , Neoplasias/genética
7.
Dev Biol ; 346(1): 113-26, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20659444

RESUMO

Cullin-RING ubiquitin ligases (CRLs) are critical regulators of multiple developmental and cellular processes in eukaryotes. CAND1 is a biochemical inhibitor of CRLs, yet has been shown to promote CRL activity in plant and mammalian cells. Here we analyze CAND1 function in the context of a developing metazoan organism. Caenorhabditis elegans CAND-1 is capable of binding to all of the cullins, and we show that it physically interacts with CUL-2 and CUL-4 in vivo. The covalent attachment of the ubiquitin-like protein Nedd8 is required for cullin activity in animals and plants. In cand-1 mutants, the levels of the neddylated isoforms of CUL-2 and CUL-4 are increased, indicating that CAND-1 is a negative regulator of cullin neddylation. cand-1 mutants are hypersensitive to the partial loss of cullin activity, suggesting that CAND-1 facilitates CRL functions. cand-1 mutants exhibit impenetrant phenotypes, including developmental arrest, morphological defects of the vulva and tail, and reduced fecundity. cand-1 mutants share with cul-1 and lin-23 mutants the phenotypes of supernumerary seam cell divisions, defective alae formation, and the accumulation of the SCF(LIN-23) target the glutamate receptor GLR-1. The observation that cand-1 mutants have phenotypes associated with the loss of the SCF(LIN-23) complex, but lack phenotypes associated with other specific CRL complexes, suggests that CAND-1 is differentially required for the activity of distinct CRL complexes.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/embriologia , Proteínas de Transporte/fisiologia , Morfogênese , Animais , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/análise , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Proteínas Culina/genética , Proteínas Culina/metabolismo , Proteínas F-Box/metabolismo , Ligases/genética , Ligases/metabolismo , Mutação , Fenótipo , Isoformas de Proteínas , Ubiquitina-Proteína Ligases/fisiologia
8.
Nat Commun ; 12(1): 3148, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035309

RESUMO

Structured Illumination Microscopy enables live imaging with sub-diffraction resolution. Unfortunately, optical aberrations can lead to loss of resolution and artifacts in Structured Illumination Microscopy rendering the technique unusable in samples thicker than a single cell. Here we report on the combination of Adaptive Optics and Structured Illumination Microscopy enabling imaging with 150 nm lateral and 570 nm axial resolution at a depth of 80 µm through Caenorhabditis elegans. We demonstrate that Adaptive Optics improves the three-dimensional resolution, especially along the axial direction, and reduces artifacts, successfully realizing 3D-Structured Illumination Microscopy in a variety of biological samples.


Assuntos
Imageamento Tridimensional/métodos , Microscopia Intravital/métodos , Iluminação/instrumentação , Animais , Artefatos , Ascomicetos , Caenorhabditis elegans , Linhagem Celular , Imageamento Tridimensional/instrumentação , Microscopia Intravital/instrumentação , Camundongos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Oryza/microbiologia , Reprodutibilidade dos Testes
9.
Curr Biol ; 17(11): 966-72, 2007 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-17509881

RESUMO

Genome stability requires that genomic DNA is replicated only once per cell cycle. The replication-licensing system ensures that the formation of prereplicative complexes is temporally separated from the initiation of DNA replication [1-4]. The replication-licensing factors Cdc6 and Cdt1 are required for the assembly of prereplicative complexes during G1 phase. During S phase, metazoan Cdt1 is targeted for degradation by the CUL4 ubiquitin ligase [5-8], and vertebrate Cdc6 is translocated from the nucleus to the cytoplasm [9, 10]. However, because residual vertebrate Cdc6 remains in the nucleus throughout S phase [10-13], it has been unclear whether Cdc6 translocation to the cytoplasm prevents rereplication [1, 2, 14]. The inactivation of C. elegans CUL-4 is associated with dramatic levels of DNA rereplication [5]. Here, we show that C. elegans CDC-6 is exported from the nucleus during S phase in response to the phosphorylation of multiple CDK sites. CUL-4 promotes the phosphorylation and subsequent translocation of CDC-6 via negative regulation of the CDK-inhibitor CKI-1. Rereplication can be induced by coexpression of nonexportable CDC-6 with nondegradable CDT-1, indicating that redundant regulation of CDC-6 and CDT-1 prevents rereplication. This demonstrates that CDC-6 translocation is critical for preventing rereplication and that CUL-4 independently controls both replication-licensing factors.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Replicação do DNA/fisiologia , Ligases/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Sítios de Ligação , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/química , Proteínas de Ciclo Celular/química , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Instabilidade Genômica , Ligases/antagonistas & inibidores , Ligases/metabolismo , Fosforilação , Interferência de RNA , Fase S
10.
Mol Cell Biol ; 27(4): 1394-406, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17145765

RESUMO

The replication of genomic DNA is strictly regulated to occur only once per cell cycle. This regulation centers on the temporal restriction of replication licensing factor activity. Two distinct ubiquitin ligase (E3) complexes, CUL4/DDB1 and SCF(Skp2), have been reported to target the replication licensing factor Cdt1 for ubiquitin-mediated proteolysis. However, it is unclear to what extent these two distinct Cdt1 degradation pathways are conserved. Here, we show that Caenorhabditis elegans DDB-1 is required for the degradation of CDT-1 during S phase. DDB-1 interacts specifically with CUL-4 but not with other C. elegans cullins. A ddb-1 null mutant exhibits extensive DNA rereplication in postembryonic BLAST cells, similar to what is observed in cul-4(RNAi) larvae. DDB-1 physically associates with CDT-1, suggesting that CDT-1 is a direct substrate of the CUL-4/DDB-1 E3 complex. In contrast, a deletion mutant of the C. elegans Skp2 ortholog, skpt-1, appears overtly wild type with the exception of an impenetrant gonad migration defect. There is no appreciable role for SKPT-1 in the degradation of CDT-1 during S phase, even in a sensitized ddb-1 mutant background. We propose that the CUL-4/DDB-1 ubiquitin ligase is the principal E3 for regulating the extent of DNA replication in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Ligases/metabolismo , Processamento de Proteína Pós-Traducional , Fase S , Alelos , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/química , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Humanos , Larva/citologia , Ligases/química , Fenótipo , Ligação Proteica , Proteínas Quinases Associadas a Fase S/metabolismo , Vulva/citologia , Vulva/crescimento & desenvolvimento
11.
Genetics ; 211(3): 797-829, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30846544

RESUMO

During animal development, a single fertilized egg forms a complete organism with tens to trillions of cells that encompass a large variety of cell types. Cell cycle regulation is therefore at the center of development and needs to be carried out in close coordination with cell differentiation, migration, and death, as well as tissue formation, morphogenesis, and homeostasis. The timing and frequency of cell divisions are controlled by complex combinations of external and cell-intrinsic signals that vary throughout development. Insight into how such controls determine in vivo cell division patterns has come from studies in various genetic model systems. The nematode Caenorhabditis elegans has only about 1000 somatic cells and approximately twice as many germ cells in the adult hermaphrodite. Despite the relatively small number of cells, C. elegans has diverse tissues, including intestine, nerves, striated and smooth muscle, and skin. C. elegans is unique as a model organism for studies of the cell cycle because the somatic cell lineage is invariant. Somatic cells divide at set times during development to produce daughter cells that adopt reproducible developmental fates. Studies in C. elegans have allowed the identification of conserved cell cycle regulators and provided insights into how cell cycle regulation varies between tissues. In this review, we focus on the regulation of the cell cycle in the context of C. elegans development, with reference to other systems, with the goal of better understanding how cell cycle regulation is linked to animal development in general.


Assuntos
Caenorhabditis elegans/genética , Ciclo Celular , Regulação da Expressão Gênica no Desenvolvimento , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Diferenciação Celular
12.
Curr Biol ; 12(4): 277-87, 2002 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-11864567

RESUMO

BACKGROUND: The SCF ubiquitin-ligase complex targets the ubiquitin-mediated degradation of proteins in multiple dynamic cellular processes. A key SCF component is the Skp1 protein that functions within the complex to link the substrate-recognition subunit to a cullin that in turn binds the ubiquitin-conjugating enzyme. In contrast to yeast and humans, Caenorhabditis elegans contains multiple expressed Skp1-related (skr) genes. RESULTS: The 21 Skp1-related (skr) genes in C. elegans form one phylogenetic clade, suggesting that a single ancestral Skp1 gene underwent independent expansion in C. elegans. The cellular and developmental functions of the 21 C. elegans skr genes were probed by dsRNA-mediated gene inactivation (RNAi). The RNAi phenotypes of the skr genes fall into two classes. First, the highly similar skr-7, -8, -9, and -10 genes are required for posterior body morphogenesis, embryonic and larval development, and cell proliferation. Second, the related skr-1 and -2 genes are required for the restraint of cell proliferation, progression through the pachytene stage of meiosis, and the formation of bivalent chromosomes at diakinesis. CUL-1 was found to interact with SKR-1, -2, -3, -7, -8, and -10 in the yeast two-hybrid system. Interestingly, SKR-3 could interact with both CUL-1 and its close paralog CUL-6. CONCLUSIONS: Members of the expanded skr gene family in C. elegans perform critical functions in regulating cell proliferation, meiosis, and morphogenesis. The finding that multiple SKRs are able to bind cullins suggests an extensive set of combinatorial SCF complexes.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Culina , Meiose , Morfogênese , Família Multigênica/genética , Animais , Sequência de Bases , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/química , Divisão Celular , Proteínas Culina/genética , Proteínas Culina/metabolismo , Feminino , Ordem dos Genes , Humanos , Infertilidade/genética , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Filogenia , Ligação Proteica , RNA/genética , RNA/metabolismo , Proteínas Quinases Associadas a Fase S , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
13.
Mol Cell Oncol ; 4(2): e1277293, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28401182

RESUMO

Mitosis inhibitors, which include antimicrotubule drugs, are chemotherapy agents that induce the arrest and apoptosis of mitotic cells. Mitotic slippage, in which mitotically arrested cells exit mitosis, limits the effectiveness of mitosis inhibitors. We have discovered that the CRL2ZYG11A/B ubiquitin ligase promotes mitotic slippage. The combination of antimicrotubule drugs and a CRL2ZYG11A/B inhibitor prevents mitotic slippage to increase antimitotic efficacy.

14.
Nat Commun ; 8(1): 182, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28769038

RESUMO

Mitochondria are dynamic organelles that undergo fusion and fission events. Mitochondrial dynamics are required for mitochondrial viability and for responses to changes in bioenergetic status. Here we describe an insulin-signaling and SCFLIN-23-regulated pathway that controls mitochondrial fusion in Caenorhabditis elegans by repressing the expression of the mitochondrial proteases SPG-7 and PPGN-1. This pathway is required for mitochondrial fusion in response to physical exertion, and for the associated extension in lifespan. We show that diverse longevity pathways exhibit increased levels of elongated mitochondria. The increased mitochondrial fusion is essential for longevity in the diverse longevity pathways, as inhibiting mitochondrial fusion reduces their lifespans to wild-type levels. Our results suggest that increased mitochondrial fusion is not a major driver of longevity, but rather is essential to allow the survival of older animals beyond their normal lifespan in diverse longevity pathways.Mitochondria can undergo shape changes as a result of fusion and fission events. Here the authors describe how insulin signalling regulates mitochondrial fusion in C. elegans, and show that mitochondrial fusion is necessary, but not sufficient, for longevity of worms with mutations that increase lifespan.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Longevidade , Dinâmica Mitocondrial , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Caenorhabditis elegans , Metabolismo Energético , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
15.
Bio Protoc ; 7(15)2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28868332

RESUMO

The Caenorhabditis elegans germ line is an important model system for the study of germ stem cells. Wild-type C. elegans germ cells are syncytial and therefore cannot be isolated in in vitro cultures. In contrast, the germ cells from tumorous mutants can be fully cellularized and isolated intact from the mutant animals. Here we describe a detailed protocol for the isolation of germ cells from tumorous mutants that allows the germ cells to be maintained for extended periods in an in vitro primary culture. This protocol has been adapted from Chaudhari et al., 2016.

16.
Cell Cycle ; 16(6): 556-564, 2017 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-28118078

RESUMO

FEM1A, FEM1B, and FEM1C are evolutionarily-conserved VHL-box proteins, the substrate recognition subunits of CUL2-RING E3 ubiquitin ligase complexes. Here, we report that FEM1 proteins are ancient regulators of Stem-Loop Binding Protein (SLBP), a conserved protein that interacts with the stem loop structure located in the 3' end of canonical histone mRNAs and functions in mRNA cleavage, translation and degradation. SLBP levels are highest during S-phase coinciding with histone synthesis. The ubiquitin ligase complex SCFcyclin F targets SLBP for degradation in G2 phase; however, the regulation of SLBP during other stages of the cell cycle is poorly understood. We provide evidence that FEM1A, FEM1B, and FEM1C interact with and mediate the degradation of SLBP. Cyclin F, FEM1A, FEM1B and FEM1C all interact with a region in SLBP's N-terminus using distinct degrons. An SLBP mutant that is unable to interact with all 4 ligases is expressed at higher levels than wild type SLBP and does not oscillate during the cell cycle. We demonstrate that orthologues of SLBP and FEM1 proteins interact in C. elegans and D. melanogaster, suggesting that the pathway is evolutionarily conserved. Furthermore, we show that FEM1 depletion in C. elegans results in the upregulation of SLBP ortholog CDL-1 in oocytes. Notably, cyclin F is absent in flies and worms, suggesting that FEM1 proteins play an important role in SLBP targeting in lower eukaryotes.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Proteólise , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Motivos de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , Sequência Conservada , Regulação para Baixo , Evolução Molecular , Humanos , Proteínas Nucleares/química , Ligação Proteica , Complexos Ubiquitina-Proteína Ligase , Fatores de Poliadenilação e Clivagem de mRNA/química
18.
Dev Cell ; 38(1): 33-46, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27404357

RESUMO

Here we describe an in vitro primary culture system for Caenorhabditis elegans germline stem cells. This culture system was used to identify a bacterial folate as a positive regulator of germ cell proliferation. Folates are a family of B-complex vitamins that function in one-carbon metabolism to allow the de novo synthesis of amino acids and nucleosides. We show that germ cell proliferation is stimulated by the folate 10-formyl-tetrahydrofolate-Glun both in vitro and in animals. Other folates that can act as vitamins to rescue folate deficiency lack this germ cell stimulatory activity. The bacterial folate precursor dihydropteroate also promotes germ cell proliferation in vitro and in vivo, despite its inability to promote one-carbon metabolism. The folate receptor homolog FOLR-1 is required for the stimulation of germ cells by 10-formyl-tetrahydrofolate-Glun and dihydropteroate. This work defines a folate and folate-related compound as exogenous signals to modulate germ cell proliferation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Proliferação de Células , Escherichia coli/metabolismo , Ácido Fólico/metabolismo , Células Germinativas/citologia , Células-Tronco/citologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Escherichia coli/citologia , Transportadores de Ácido Fólico/genética , Transportadores de Ácido Fólico/metabolismo , Células Germinativas/metabolismo , Células-Tronco/metabolismo
19.
J Cell Biol ; 215(2): 151-166, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27810909

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase is known to target the degradation of cyclin B1, which is crucial for mitotic progression in animal cells. In this study, we show that the ubiquitin ligase CRL2ZYG-11 redundantly targets the degradation of cyclin B1 in Caenorhabditis elegans and human cells. In C. elegans, both CRL2ZYG-11 and APC/C are required for proper progression through meiotic divisions. In human cells, inactivation of CRL2ZYG11A/B has minimal effects on mitotic progression when APC/C is active. However, when APC/C is inactivated or cyclin B1 is overexpressed, CRL2ZYG11A/B-mediated degradation of cyclin B1 is required for normal progression through metaphase. Mitotic cells arrested by the spindle assembly checkpoint, which inactivates APC/C, often exit mitosis in a process termed "mitotic slippage," which generates tetraploid cells and limits the effectiveness of antimitotic chemotherapy drugs. We show that ZYG11A/B subunit knockdown, or broad cullin-RING ubiquitin ligase inactivation with the small molecule MLN4924, inhibits mitotic slippage in human cells, suggesting the potential for antimitotic combination therapy.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina B1/metabolismo , Mitose , Proteólise , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Linhagem Celular Tumoral , Células HEK293 , Humanos , Mitose/efeitos dos fármacos , Nocodazol/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Imagem com Lapso de Tempo
20.
Cell Cycle ; 2(5): 431-4, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12963835

RESUMO

Eukaryotes employ redundant mechanisms to limit the replication of genomic DNA to only once per cycle. These mechanisms prevent DNA re-replication by restricting the assembly of the pre-replication complex to the cell cycle stages of late mitosis and G1 phase so that the re-initiation of DNA replication cannot occur during S phase. Here we discuss the conserved yet divergent mechanisms of replication control employed in yeast and metazoan species, including a perspective on the newly uncovered role of the CUL-4 ubiquitin ligase as a central regulator of DNA replication in the nematode Caenorhabditis elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Replicação do DNA/fisiologia , Ligases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila , Fase G1/genética , Fase G1/fisiologia , Ligases/genética , Componente 2 do Complexo de Manutenção de Minicromossomo , Mitose/genética , Mitose/fisiologia , Proteínas Nucleares/genética , Complexo de Reconhecimento de Origem , Origem de Replicação/genética , Origem de Replicação/fisiologia , Saccharomycetales/genética , Saccharomycetales/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe , Xenopus/genética , Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA