Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Birth Defects Res B Dev Reprod Toxicol ; 98(4): 343-63, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24123775

RESUMO

A metabolic biomarker-based in vitro assay utilizing human embryonic stem (hES) cells was developed to identify the concentration of test compounds that perturbs cellular metabolism in a manner indicative of teratogenicity. This assay is designed to aid the early discovery-phase detection of potential human developmental toxicants. In this study, metabolomic data from hES cell culture media were used to assess potential biomarkers for development of a rapid in vitro teratogenicity assay. hES cells were treated with pharmaceuticals of known human teratogenicity at a concentration equivalent to their published human peak therapeutic plasma concentration. Two metabolite biomarkers (ornithine and cystine) were identified as indicators of developmental toxicity. A targeted exposure-based biomarker assay using these metabolites, along with a cytotoxicity endpoint, was then developed using a 9-point dose-response curve. The predictivity of the new assay was evaluated using a separate set of test compounds. To illustrate how the assay could be applied to compounds of unknown potential for developmental toxicity, an additional 10 compounds were evaluated that do not have data on human exposure during pregnancy, but have shown positive results in animal developmental toxicity studies. The new assay identified the potential developmental toxicants in the test set with 77% accuracy (57% sensitivity, 100% specificity). The assay had a high concordance (≥75%) with existing in vivo models, demonstrating that the new assay can predict the developmental toxicity potential of new compounds as part of discovery phase testing and provide a signal as to the likely outcome of required in vivo tests.


Assuntos
Bioensaio/métodos , Biomarcadores/metabolismo , Células-Tronco Embrionárias/metabolismo , Testes de Toxicidade/métodos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Feminino , Humanos , Metabolômica , Modelos Biológicos , Gravidez , Teratogênicos/toxicidade
2.
Reprod Toxicol ; 73: 350-361, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28746836

RESUMO

The relative developmental toxicity potency of a series of retinoid analogues was evaluated using a human induced pluripotent stem (iPS) cell assay that measures changes in the biomarkers ornithine and cystine. Analogue potency was predicted, based on the assay endpoint of the ornithine/cystine (o/c) ratio, to be all-trans-retinoic acid>TTNPB>13-cis-retinoic acid≈9-cis-retinoic acid>acitretin>etretinate>retinol. These rankings correlate with in vivo data and demonstrate successful application of the assay to rank a series of related toxic and non-toxic compounds. The retinoic acid receptor α (RARα)-selective antagonist Ro 41-5253 inhibited the cystine perturbation caused by all-trans-retinoic acid, TTNPB, 13-cis-retinoic acid, 9-cis-retinoic acid, and acitretin. Ornithine was altered independent of RARα in all retinoids except acitretin. These results suggest a role for an RARα-mediated mechanism in retinoid-induced developmental toxicity through altered cystine metabolism.


Assuntos
Cistina/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Receptor alfa de Ácido Retinoico/metabolismo , Retinoides/farmacologia , Bioensaio , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ornitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA