Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 23(10)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628110

RESUMO

Glucosylceramide is present in many foods, such as crops and fermented foods. Most glucosylceramides are not degraded or absorbed in the small intestine and pass through the large intestine. Glucosylceramide exerts versatile effects on colon tumorigenesis, skin moisture, cholesterol metabolism and improvement of intestinal microbes in vivo. However, the mechanism of action has not yet been fully elucidated. To gain insight into the effect of glucosylceramide on intestinal microbes, glucosylceramide was anaerobically incubated with the dominant intestinal microbe, Blautia coccoides, and model intestinal microbes. The metabolites of the cultured broth supplemented with glucosylceramide were significantly different from those of broth not treated with glucosylceramide. The number of Gram-positive bacteria was significantly increased upon the addition of glucosylceramide compared to that in the control. Glucosylceramide endows intestinal microbes with tolerance to secondary bile acid. These results first demonstrated that glucosylceramide plays a role in the modification of intestinal microbes.


Assuntos
Ácidos e Sais Biliares , Glucosilceramidas , Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Glucosilceramidas/metabolismo , Bactérias Gram-Positivas/metabolismo , Intestinos/microbiologia
2.
Curr Microbiol ; 77(4): 632-637, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31250090

RESUMO

Together with the worldwide Washoku (traditional Japanese foods and drinks) boom, interest in sake, a traditional Japanese alcoholic drink, is increasing around the world. There are few scientific analyses and studies on the production of sake or the final product itself. We show the diversity of bacterial contaminants during sake production and investigated the effects of different ingredients on sake (for example, amino acids). The koji mold Aspergillus oryzae converts rice starch into sugars, and then, the sake yeast Saccharomyces cerevisiae converts the sugars to ethanol. Comparative studies of the bacterial flora of different sakes have shown that various bacterial species are detected, but that there are few frequently detected bacteria. In addition, the bacterial flora does not vary much during the process of sake brewing, after the koji (steamed rice covered with koji mold) and moto (fermentation starter) are mixed, suggesting that most bacteria contaminate the sake during the process of koji and moto production. Thus, there is the possibility that the contaminating bacteria may grow due to a relationship with the koji mold and/or the sake yeast. The flavor, taste, and quality of sakes differ, even between the same brands of sakes, which may be attributed to variations in the contaminating bacteria during sake production.


Assuntos
Bebidas Alcoólicas/análise , Bebidas Alcoólicas/microbiologia , Bactérias/isolamento & purificação , Fermentação , Oryza/metabolismo , Aminoácidos/análise , Aspergillus oryzae/metabolismo , Fenômenos Fisiológicos Bacterianos , Etanol/metabolismo , Contaminação de Alimentos/prevenção & controle , Japão , Oryza/microbiologia , Saccharomyces cerevisiae/metabolismo
3.
Biosci Biotechnol Biochem ; 83(8): 1514-1522, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30595103

RESUMO

Koji, which is manufactured by proliferating non-pathogenic fungus Aspergillus oryzae on steamed rice, is the base for Japanese traditional fermented foods. We have revealed that koji and related Japanese fermented foods and drinks such as amazake, shio-koji, unfiltered sake and miso contain abundant glycosylceramide. Here, we report that feeding of koji glycosylceramide to obese mice alters the cholesterol metabolism . Liver cholesterol was significantly decreased in obese mice fed with koji glycosylceramide. We hypothesized that their liver cholesterol was decreased because it was converted to bile acids. Consistent with the hypothesis, many bile acids were increased in the cecum and feces of obese mice fed with koji glycosylceramide. Expressions of CYP7A1 and ABCG8 involved in the metabolism of cholesterol were significantly increased in the liver of mice fed with koji glycosylceramide. Therefore, it was considered that koji glycosylceramide affects the cholesterol metabolism in obese mice.


Assuntos
Ceramidas/administração & dosagem , Colesterol/metabolismo , Alimentos Fermentados , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Aspergillus oryzae/metabolismo , Ácidos e Sais Biliares/metabolismo , Colesterol 7-alfa-Hidroxilase/metabolismo , Japão , Lipoproteínas/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos
4.
Food Technol Biotechnol ; 57(4): 535-543, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32123515

RESUMO

Addition of amino acids to fermentation media affects the growth and brewing profiles of yeast. In addition, retaining mitochondrial activity during fermentation is critical for the fermentation profiles of brewer's yeasts. However, a concrete mechanism linking amino acids in fermentation media with mitochondrial activity during fermentation of brewer's yeasts is yet unknown. Here, we report that amino acids in fermentation media, especially methionine (Met) and glycine (Gly), stabilize mitochondrial activity during fermentation of sake yeast. By utilizing atg32△ mutant sake yeast, which shows deteriorated mitochondrial activity, we screened candidate amino acids that strengthened the mitochondrial activity of sake yeast during fermentation. We identified Met and Gly as candidate amino acids that fortify mitochondrial activity in sake yeast during fermentation. To confirm this biochemically, we measured reactive oxygen species (ROS) levels in sake yeast fermented with Met and Gly. Yeast cells supplemented with Met and Gly retained high ROS levels relative to the non-supplemented sake yeast. Moreover, Met-supplemented cells showed a metabolome distinct from that of non-supplemented cells. These results indicate that specific amino acids such as Met and Gly stabilize the mitochondrial activity of sake yeast during fermentation and thus manipulate brewing profiles of yeast.

5.
Appl Environ Microbiol ; 83(24)2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28986374

RESUMO

The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast (Saccharomyces cerevisiae) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their "petite" strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile.IMPORTANCE Chromosomal aneuploidy has not been evaluated in development of sake brewing yeast strains. This study shows the relationship between chromosomal aneuploidy and brewing characteristics of brewery yeast strains. High concentrations of pyruvate during sake storage give rise to α-acetolactate and, in turn, to high concentrations of diacetyl, which is considered an off-flavor. It was demonstrated that pyruvate-underproducing sake yeast is trisomic for chromosome XI and XIV. Furthermore, sake yeast haploids with extra chromosomes produced reduced levels of pyruvate and showed metabolic processes characteristic of increased mitochondrial activity. This novel discovery will enable the selection of favorable brewery yeasts by monitoring the copy numbers of specific chromosomes through a process that does not involve generation/use of genetically modified organisms.


Assuntos
Bebidas Alcoólicas/microbiologia , Cromossomos Fúngicos/genética , Saccharomyces cerevisiae/genética , Trissomia/genética , Fermentação
6.
Crit Rev Biotechnol ; 37(2): 177-189, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26953525

RESUMO

Although there have been approximately 60 chemical compounds identified as potent fermentation inhibitors in lignocellulose hydrolysate, our research group recently discovered glycolaldehyde as a key fermentation inhibitor during second generation biofuel production. Accordingly, we have developed a yeast S. cerevisiae strain exhibiting tolerance to glycolaldehyde. During this glycolaldehyde study, we established novel approaches for rational engineering of inhibitor-tolerant S. cerevisiae strains, including engineering redox cofactors and engineering the SUMOylation pathway. These new technical dimensions provide a novel platform for engineering S. cerevisiae strains to overcome one of the key barriers for industrialization of lignocellulosic ethanol production. As such, this review discusses novel biochemical insight of glycolaldehyde in the context of the biofuel industry.


Assuntos
Acetaldeído/análogos & derivados , Saccharomyces cerevisiae/efeitos dos fármacos , Acetaldeído/farmacologia , Acetaldeído/toxicidade , Biocombustíveis , Etanol/metabolismo , Etilenoglicol/metabolismo , Fermentação/efeitos dos fármacos , Glutationa/metabolismo , Lignina/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Sumoilação
7.
Appl Environ Microbiol ; 81(11): 3688-98, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25795678

RESUMO

In nature, different microorganisms create communities through their physiochemical and metabolic interactions. Many fermenting microbes, such as yeasts, lactic acid bacteria, and acetic acid bacteria, secrete acidic substances and grow faster at acidic pH values. However, on the surface of cereals, the pH is neutral to alkaline. Therefore, in order to grow on cereals, microbes must adapt to the alkaline environment at the initial stage of colonization; such adaptations are also crucial for industrial fermentation. Here, we show that the yeast Saccharomyces cerevisiae, which is incapable of synthesizing glucosylceramide (GlcCer), adapted to alkaline conditions after exposure to GlcCer from koji cereal cultured with Aspergillus kawachii. We also show that various species of GlcCer derived from different plants and fungi similarly conferred alkali tolerance to yeast. Although exogenous ceramide also enhanced the alkali tolerance of yeast, no discernible degradation of GlcCer to ceramide was observed in the yeast culture, suggesting that exogenous GlcCer itself exerted the activity. Exogenous GlcCer also increased ethanol tolerance and modified the flavor profile of the yeast cells by altering the membrane properties. These results indicate that GlcCer from A. kawachii modifies the physiology of the yeast S. cerevisiae and demonstrate a new mechanism for cooperation between microbes in food fermentation.


Assuntos
Aspergillus/fisiologia , Grão Comestível/microbiologia , Aromatizantes/metabolismo , Glucosilceramidas/metabolismo , Membranas/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Grão Comestível/metabolismo , Etanol/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
8.
Appl Microbiol Biotechnol ; 99(1): 501-15, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25359478

RESUMO

The complex inhibitory effects of inhibitors present in lignocellulose hydrolysate suppress the ethanol fermentation of Saccharomyces cerevisiae. Although the interactive inhibitory effects play important roles in the actual hydrolysate, few studies have investigated glycolaldehyde, the key inhibitor of hot-compressed water-treated lignocellulose hydrolysate. Given this challenge, we investigated the interactive effects of mixed fermentation inhibitors, including glycolaldehyde. First, we confirmed that glycolaldehyde was the most potent inhibitor in the hydrolysate and exerted interactive inhibitory effects in combination with major inhibitors. Next, through genome-wide analysis and megavariate data modeling, we identified SUMOylation as a novel potential mechanism to overcome the combinational inhibitory effects of fermentation inhibitors. Indeed, overall SUMOylation was increased and Pgk1, which produces an ATP molecule in glycolysis by substrate-level phosphorylation, was SUMOylated and degraded in response to glycolaldehyde. Augmenting the SUMO-dependent ubiquitin system in the ADH1-expressing strain significantly shortened the lag phase of growth, released cells from G2/M arrest, and improved energy status and glucose uptake in the inhibitor-containing medium. In summary, our study was the first to establish SUMOylation as a novel platform for regulating the lag phase caused by complex fermentation inhibitors.


Assuntos
Antifúngicos/metabolismo , Antifúngicos/toxicidade , Lignina/metabolismo , Lignina/toxicidade , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Acetaldeído/toxicidade , Biotecnologia/métodos , Ciclo Celular , Metabolismo Energético , Fermentação , Proteína SUMO-1/genética , Saccharomyces cerevisiae/genética
9.
Appl Environ Microbiol ; 80(3): 1002-12, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24271183

RESUMO

Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 has one of the highest fermentation rates among brewery yeasts used worldwide; therefore, it is assumed that it is not possible to enhance its fermentation rate. However, in this study, we found that fermentation by sake yeast can be enhanced by inhibiting mitophagy. We observed mitophagy in wild-type sake yeast during the brewing of Ginjo sake, but not when the mitophagy gene (ATG32) was disrupted. During sake brewing, the maximum rate of CO2 production and final ethanol concentration generated by the atg32Δ laboratory yeast mutant were 7.50% and 2.12% higher than those of the parent strain, respectively. This mutant exhibited an improved fermentation profile when cultured under limiting nutrient concentrations such as those used during Ginjo sake brewing as well as in minimal synthetic medium. The mutant produced ethanol at a concentration that was 2.76% higher than the parent strain, which has significant implications for industrial bioethanol production. The ethanol yield of the atg32Δ mutant was increased, and its biomass yield was decreased relative to the parent sake yeast strain, indicating that the atg32Δ mutant has acquired a high fermentation capability at the cost of decreasing biomass. Because natural biomass resources often lack sufficient nutrient levels for optimal fermentation, mitophagy may serve as an important target for improving the fermentative capacity of brewery yeasts.


Assuntos
Etanol/metabolismo , Mitofagia , Saccharomyces cerevisiae/fisiologia , Proteínas Relacionadas à Autofagia , Dióxido de Carbono/metabolismo , Fermentação , Técnicas de Inativação de Genes , Receptores Citoplasmáticos e Nucleares/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
10.
FEMS Yeast Res ; 14(5): 789-96, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24889034

RESUMO

Research on the relationship between mitochondrial membrane potential and fermentation profile is being intensely pursued because of the potential for developing advanced fermentation technologies. In the present study, we isolated naturally occurring strains of yeast from sake mash that produce high levels of malic acid and demonstrate that variations in mitochondrial membrane potential correlate with malic acid production. To define the underlying biochemical mechanism, we determined the activities of enzymes required for malic acid synthesis and found that pyruvate carboxylase and malate dehydrogenase activities in strains that produce high levels of malic acid were elevated compared with the standard sake strain K901. These results inspired us to hypothesize that decreased mitochondrial membrane potential was responsible for increased malic acid synthesis, and we present data supporting this hypothesis. Thus, the mitochondrial membrane potential of high malic acid producers was lower compared with standard strains. We conclude that mitochondrial membrane potential correlates with malic acid production.


Assuntos
Malatos/metabolismo , Potencial da Membrana Mitocondrial , Saccharomyces cerevisiae/fisiologia , Fermentação , Malato Desidrogenase/metabolismo , Piruvato Carboxilase/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
FEMS Yeast Res ; 14(2): 249-60, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24151933

RESUMO

Although the decrease in pyruvate secretion by brewer's yeasts during fermentation has long been desired in the alcohol beverage industry, rather little is known about the regulation of pyruvate accumulation. In former studies, we developed a pyruvate under-secreting sake yeast by isolating a strain (TCR7) tolerant to ethyl α-transcyanocinnamate, an inhibitor of pyruvate transport into mitochondria. To obtain insights into pyruvate metabolism, in this study, we investigated the mitochondrial activity of TCR7 by oxigraphy and (13) C-metabolic flux analysis during aerobic growth. While mitochondrial pyruvate oxidation was higher, glycerol production was decreased in TCR7 compared with the reference. These results indicate that mitochondrial activity is elevated in the TCR7 strain with the consequence of decreased pyruvate accumulation. Surprisingly, mitochondrial activity is much higher in the sake yeast compared with CEN.PK 113-7D, the reference strain in metabolic engineering. When shifted from aerobic to anaerobic conditions, sake yeast retains a branched mitochondrial structure for a longer time than laboratory strains. The regulation of mitochondrial activity can become a completely novel approach to manipulate the metabolic profile during fermentation of brewer's yeasts.


Assuntos
Fermentação , Metaboloma , Mitocôndrias/metabolismo , Ácido Pirúvico/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo do Ácido Cítrico , Oxirredução , Complexo Piruvato Desidrogenase/metabolismo
12.
Life (Basel) ; 14(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38929722

RESUMO

Skin barrier function, prevent colon cancer, head and neck cancer, and decrease liver cholesterol. However, the mechanism of action has not yet been elucidated. In this study, we propose a new working hypothesis regarding the health benefits and functions of glucosylceramide: decreased fecal hardness. This hypothesis was verified using an in vitro hardness test. The hardness of feces supplemented with glucosylceramide was significantly lower than that of the control. Based on these results, a new working hypothesis of dietary glucosylceramide was conceived: glucosylceramide passes through the small intestine, interacts with intestinal bacteria, increases the tolerance of these bacteria toward secondary bile acids, and decreases the hardness of feces, and these factors synergistically result in in vivo effects. This hypothesis forms the basis for further studies on the health benefits and functions of dietary glucosylceramides.

13.
Mol Microbiol ; 86(5): 1246-61, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23062268

RESUMO

Sphingolipids are a class of membrane lipids conserved from yeast to mammals which determine whether a cell dies or survives. Perturbations in sphingolipid metabolism cause apoptotic cell death. Recent studies indicate that reduced sphingolipid levels trigger the cell death, but little is known about the mechanisms. In the budding yeast Saccharomyces cerevisiae, we show that reduction in complex sphingolipid levels causes loss of viability, most likely due to the induction of mitochondria-dependent apoptotic cell death pathway, accompanied by changes in mitochondrial and endoplasmic reticulum morphology and endoplasmic reticulum stress. Elevated cytosolic free calcium is required for the loss of viability. These results indicate that complex sphingolipids are essential for maintaining endoplasmic reticulum homeostasis and suggest that perturbation in complex sphingolipid levels activates an endoplasmic reticulum stress-mediated and calcium-dependent pathway to propagate apoptotic signals to the mitochondria.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Regulação Fúngica da Expressão Gênica , Mitocôndrias/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Esfingolipídeos/farmacologia , Antifúngicos/farmacologia , Apoptose/fisiologia , Cálcio/metabolismo , Morte Celular , Citosol/metabolismo , Depsipeptídeos/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Homeostase , Mitocôndrias/fisiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/fisiologia , Esfingolipídeos/metabolismo
14.
Appl Microbiol Biotechnol ; 97(14): 6589-600, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23744286

RESUMO

Hot-compressed water treatment of lignocellulose liberates numerous inhibitors that prevent ethanol fermentation of yeast Saccharomyces cerevisiae. Glycolaldehyde is one of the strongest fermentation inhibitors and we developed a tolerant strain by overexpressing ADH1 encoding an NADH-dependent reductase; however, its recovery was partial. In this study, to overcome this technical barrier, redox cofactor preference of glycolaldehyde detoxification was investigated. Glycolaldehyde-reducing activity of the ADH1-overexpressing strain was NADH-dependent but not NADPH-dependent. Moreover, genes encoding components of the pentose phosphate pathway, which generates intracellular NADPH, was upregulated in response to high concentrations of glycolaldehyde. Mutants defective in pentose phosphate pathways were sensitive to glycolaldehyde. Genome-wide survey identified GRE2 encoding a NADPH-dependent reductase as the gene that confers tolerance to glycolaldehyde. Overexpression of GRE2 in addition to ADH1 further improved the tolerance to glycolaldehyde. NADPH-dependent glycolaldehyde conversion to ethylene glycol and NADP+ content of the strain overexpressing both ADH1 and GRE2 were increased at 5 mM glycolaldehyde. Expression of GRE2 was increased in response to glycolaldehyde. Carbon metabolism of the strain was rerouted from glycerol to ethanol. Thus, it was concluded that the overexpression of GRE2 together with ADH1 restores glycolaldehyde tolerance by augmenting the NADPH-dependent reduction pathway in addition to NADH-dependent reduction pathway. The redox cofactor control for detoxification of glycolaldehyde proposed in this study could influence strategies for improving the tolerance of other fermentation inhibitors.


Assuntos
Acetaldeído/análogos & derivados , Etanol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetaldeído/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Fermentação , Microbiologia Industrial , Engenharia Metabólica , NAD/metabolismo , NADP/metabolismo , Oxirredução , Via de Pentose Fosfato , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Appl Microbiol Biotechnol ; 94(1): 273-83, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22311646

RESUMO

Hot-compressed water treatment of cellulose and hemicellulose for subsequent bioethanol production is a novel, economically feasible, and nonhazardous method for recovering sugars. However, the hot-compressed water-treated cellulose and hemicellulose inhibit subsequent ethanol fermentation by the yeast Saccharomyces cerevisiae. To overcome this problem, we engineered a yeast strain with improved tolerance to hot-compressed water-treated cellulose. We first determined that glycolaldehyde has a greater inhibitory effect than 5-HMF and furfural and a combinational effect with them. On the basis of the hypothesis that the reduction of glycolaldehyde to ethylene glycol should detoxify glycolaldehyde, we developed a strain overexpressing the alcohol dehydrogenase gene ADH1. The ADH1-overexpressing strain exhibits an improved fermentation profile in a glycolaldehyde-containing medium. The conversion ratio of glycolaldehyde to ethylene glycol is 30 ± 1.9% when the control strain is used; this ratio increases to 77 ± 3.6% in the case of the ADH1-overexpressing strain. A glycolaldehyde treatment and the overexpression of ADH1 cause changes in the fermentation products so as to balance the metabolic carbon flux and the redox status. Finally, the ADH1-overexpressing strain shows a statistically significantly improved fermentation profile in a hot-compressed water-treated cellulose-containing medium. The conversion ratio of glycolaldehyde to ethylene glycol is 33 ± 0.85% when the control strain is used but increases to 72 ± 1.7% in the case of the ADH1-overexpressing strain. These results show that the reduction of glycolaldehyde to ethylene glycol is a promising strategy to decrease the toxicity of hot-compressed water-treated cellulose. This is the first report on the improvement of yeast tolerance to hot-compressed water-treated cellulose and glycolaldehyde.


Assuntos
Álcool Desidrogenase/metabolismo , Celulose/metabolismo , Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Álcool Desidrogenase/genética , Celulose/química , Etanol/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Biosci Biotechnol Biochem ; 75(10): 2025-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21979083

RESUMO

We characterized high malic acid-producing strains of Saccharomyces cerevisiae isolated from sake mash. We compared the gene expression of these strains with those of the parental strain by DNA microarray, and found that stress response genes, such as HSP12, were commonly upregulated in the high malate-producing strains, whereas thiamine synthesis genes, such as THI4 and SNZ2, were downregulated in these strains.


Assuntos
Bebidas Alcoólicas/microbiologia , Malatos/metabolismo , Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/metabolismo , Fermentação , Glucose/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Saccharomyces cerevisiae/genética
17.
Biotechnol Lett ; 33(2): 285-92, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20960220

RESUMO

Degradation of lignocellulose with pressurised hot water is an efficient method of bioethanol production. However, the resultant solution inhibits ethanol fermentation by Saccharomyces cerevisiae. Here, we first report that glycolaldehyde, which is formed when lignocellulose is treated with pressurised hot water, inhibits ethanol fermentation. The final concentration of glycolaldehyde formed by the treatment of lignocellulose with pressurised hot water ranges from 1 to 24 M, and 1-10 mM glycolaldehyde was sufficient to inhibit fermentation. This result indicates that glycolaldehyde is one of the main substances responsible for inhibiting fermentation after pressurised hot water degradation of lignocellulose. Genome-wide screening of S. cerevisiae revealed that genes encoding alcohol dehydrogenase, methylglyoxal reductase, polysomes, and the ubiquitin ligase complex are required for glycolaldehyde tolerance. These novel findings will provide new perspectives on breeding yeast for bioethanol production from biomass treated with pressurised hot water.


Assuntos
Acetaldeído/análogos & derivados , Etanol/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Acetaldeído/toxicidade , Álcool Desidrogenase/metabolismo , Oxirredutases do Álcool/metabolismo , Tolerância a Medicamentos , Fermentação , Perfilação da Expressão Gênica , Lignina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo
18.
J Fungi (Basel) ; 7(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804991

RESUMO

Although most fungi cause pathogenicity toward human beings, dynasties of the East Asian region have domesticated and utilized specific fungi for medical applications. The Japanese dynasty and nation have domesticated and utilized koji fermented with non-pathogenic fungus Aspergillus oryzae for more than 1300 years. Recent research has elucidated that koji contains medicinal substances such as Taka-diastase, acid protease, koji glycosylceramide, kojic acid, oligosaccharides, ethyl-α-d-glucoside, ferulic acid, ergothioneine, pyroglutamyl leucine, pyranonigrin A, resistant proteins, deferriferrichrysin, polyamines, Bifidobacterium-stimulating peptides, angiotensin I-converting enzyme inhibitor peptides, 14-dehydroergosterol, beta-glucan, biotin, and citric acid. This review introduces potential medical applications of such medicinal substances to hyperlipidemia, diabetes, hypertension, cardiovascular and cognitive diseases, chronic inflammation, epidermal permeability barrier disruption, coronavirus disease 2019 (COVID-19), and anti-cancer therapy.

19.
J Biosci Bioeng ; 131(6): 640-646, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33597082

RESUMO

The mechanism of pyruvate-underproduction of aneuploid sake yeast was investigated in this study. In our previous report, we revealed that an increase in chromosome XI decreases pyruvate productivity of sake yeast. In this report, we found that increased copy number of CCP1, which is located on chromosome XI and encodes cytochrome-c peroxidase, decreased the pyruvate productivity of sake yeasts. Introducing an extra copy of CCP1 activated respiratory metabolism governed by Hap4 and increased reactive oxygen species. Therefore, it was concluded that increased copy number of CCP1 on chromosome XI activated respiratory metabolism and decreased pyruvate levels in an aneuploid sake yeast. This is the first report that describes a mechanism underlying the improvement of brewery yeast by chromosomal aneuploidy.


Assuntos
Bebidas Alcoólicas , Citocromo-c Peroxidase , Ácido Pirúvico/metabolismo , Saccharomyces cerevisiae , Aneuploidia , Citocromo-c Peroxidase/genética , Citocromo-c Peroxidase/metabolismo , Variações do Número de Cópias de DNA/fisiologia , Metabolismo Energético/genética , Fermentação/genética , Dosagem de Genes , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Redes e Vias Metabólicas/genética , Organismos Geneticamente Modificados , Consumo de Oxigênio/genética , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
20.
Biosci Biotechnol Biochem ; 74(4): 843-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20445321

RESUMO

Pyruvate is the key substance controlling the formation of diacetyl, acetaldehyde, and acetate during alcoholic fermentation. Here we report the breeding of a low pyruvate-producing sake yeast by isolation of a mutant resistant to ethyl alpha-transcyanocinnamate, an inhibitor of mitochondrial pyruvate transport. Mitochondrial function was involved in resistance to this substance and in the production of pyruvate by the mutants.


Assuntos
Mitocôndrias/metabolismo , Piruvatos/metabolismo , Ácido Pirúvico/metabolismo , Acetatos/metabolismo , Bebidas Alcoólicas , Intoxicação Alcoólica/genética , Intoxicação Alcoólica/metabolismo , Alcoólicos , Transporte Biológico/genética , Cruzamento , Fermentação/genética , Mitocôndrias/genética , Saccharomyces cerevisiae/genética , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA