Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nucl Cardiol ; : 101889, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38852900

RESUMO

BACKGROUND: We developed an explainable deep-learning (DL)-based classifier to identify flow-limiting coronary artery disease (CAD) by O-15 H2O perfusion positron emission tomography computed tomography (PET/CT) and coronary CT angiography (CTA) imaging. The classifier uses polar map images with numerical data and visualizes data findings. METHODS: A DLmodel was implemented and evaluated on 138 individuals, consisting of a combined image-and data-based classifier considering 35 clinical, CTA, and PET variables. Data from invasive coronary angiography were used as reference. Performance was evaluated with clinical classification using accuracy (ACC), area under the receiver operating characteristic curve (AUC), F1 score (F1S), sensitivity (SEN), specificity (SPE), precision (PRE), net benefit, and Cohen's Kappa. Statistical testing was conducted using McNemar's test. RESULTS: The DL model had a median ACC = 0.8478, AUC = 0.8481, F1S = 0.8293, SEN = 0.8500, SPE = 0.8846, and PRE = 0.8500. Improved detection of true-positive and false-negative cases, increased net benefit in thresholds up to 34%, and comparable Cohen's kappa was seen, reaching similar performance to clinical reading. Statistical testing revealed no significant differences between DL model and clinical reading. CONCLUSIONS: The combined DL model is a feasible and an effective method in detection of CAD, allowing to highlight important data findings individually in interpretable manner.

2.
Neurol Sci ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38866971

RESUMO

OBJECTIVES: The objectives of this narrative review are to summarize the current state of AI applications in neuroimaging for early Alzheimer's disease (AD) prediction and to highlight the potential of AI techniques in improving early AD diagnosis, prognosis, and management. METHODS: We conducted a narrative review of studies using AI techniques applied to neuroimaging data for early AD prediction. We examined single-modality studies using structural MRI and PET imaging, as well as multi-modality studies integrating multiple neuroimaging techniques and biomarkers. Furthermore, they reviewed longitudinal studies that model AD progression and identify individuals at risk of rapid decline. RESULTS: Single-modality studies using structural MRI and PET imaging have demonstrated high accuracy in classifying AD and predicting progression from mild cognitive impairment (MCI) to AD. Multi-modality studies, integrating multiple neuroimaging techniques and biomarkers, have shown improved performance and robustness compared to single-modality approaches. Longitudinal studies have highlighted the value of AI in modeling AD progression and identifying individuals at risk of rapid decline. However, challenges remain in data standardization, model interpretability, generalizability, clinical integration, and ethical considerations. CONCLUSION: AI techniques applied to neuroimaging data have the potential to improve early AD diagnosis, prognosis, and management. Addressing challenges related to data standardization, model interpretability, generalizability, clinical integration, and ethical considerations is crucial for realizing the full potential of AI in AD research and clinical practice. Collaborative efforts among researchers, clinicians, and regulatory agencies are needed to develop reliable, robust, and ethical AI tools that can benefit AD patients and society.

3.
Sci Rep ; 14(1): 6086, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480847

RESUMO

Research on different machine learning (ML) has become incredibly popular during the past few decades. However, for some researchers not familiar with statistics, it might be difficult to understand how to evaluate the performance of ML models and compare them with each other. Here, we introduce the most common evaluation metrics used for the typical supervised ML tasks including binary, multi-class, and multi-label classification, regression, image segmentation, object detection, and information retrieval. We explain how to choose a suitable statistical test for comparing models, how to obtain enough values of the metric for testing, and how to perform the test and interpret its results. We also present a few practical examples about comparing convolutional neural networks used to classify X-rays with different lung infections and detect cancer tumors in positron emission tomography images.


Assuntos
Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Aprendizado de Máquina Supervisionado , Tomografia por Emissão de Pósitrons
4.
Sleep Med Rev ; 77: 101967, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38936220

RESUMO

The quality of sleep plays a significant role in determining human well-being, and studying sleep and sleep disorders using various methods can aid in the prevention and treatment of diseases. Positron emission tomography (PET) is a noninvasive and highly sensitive medical imaging technique that has been widely adopted in the clinic. This review article provides data on research activity related to sleep and sleep apnea and discusses the use of PET in investigating sleep apnea and other sleep disorders. We conducted a statistical analysis of the number of original research articles published on sleep and sleep apnea between 1965 and 2021 and found that there has been a dramatic increase in publications since 1990. The distribution of contributing countries and regions has also undergone significant changes. Although there is an extensive body of literature on sleep research (256,399 original research articles during 1965-2021), PET has only been used in 54 of these published studies, indicating a largely untapped area of research. Nonetheless, PET is a useful tool for identifying connections between sleep disorders and pathological changes in various diseases, including neurological, metabolic, and cardiovascular disorders, as well as cancer. To facilitate the broader use of PET in sleep apnea research, further studies are needed in both clinical and preclinical settings.

5.
Ann Nucl Med ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842629

RESUMO

BACKGROUND: Cardiac positron emission tomography (PET) can visualize and quantify the molecular and physiological pathways of cardiac function. However, cardiac and respiratory motion can introduce blurring that reduces PET image quality and quantitative accuracy. Dual cardiac- and respiratory-gated PET reconstruction can mitigate motion artifacts but increases noise as only a subset of data are used for each time frame of the cardiac cycle. AIM: The objective of this study is to create a zero-shot image denoising framework using a conditional generative adversarial networks (cGANs) for improving image quality and quantitative accuracy in non-gated and dual-gated cardiac PET images. METHODS: Our study included retrospective list-mode data from 40 patients who underwent an 18F-fluorodeoxyglucose (18F-FDG) cardiac PET study. We initially trained and evaluated a 3D cGAN-known as Pix2Pix-on simulated non-gated low-count PET data paired with corresponding full-count target data, and then deployed the model on an unseen test set acquired on the same PET/CT system including both non-gated and dual-gated PET data. RESULTS: Quantitative analysis demonstrated that the 3D Pix2Pix network architecture achieved significantly (p value<0.05) enhanced image quality and accuracy in both non-gated and gated cardiac PET images. At 5%, 10%, and 15% preserved count statistics, the model increased peak signal-to-noise ratio (PSNR) by 33.7%, 21.2%, and 15.5%, structural similarity index (SSIM) by 7.1%, 3.3%, and 2.2%, and reduced mean absolute error (MAE) by 61.4%, 54.3%, and 49.7%, respectively. When tested on dual-gated PET data, the model consistently reduced noise, irrespective of cardiac/respiratory motion phases, while maintaining image resolution and accuracy. Significant improvements were observed across all gates, including a 34.7% increase in PSNR, a 7.8% improvement in SSIM, and a 60.3% reduction in MAE. CONCLUSION: The findings of this study indicate that dual-gated cardiac PET images, which often have post-reconstruction artifacts potentially affecting diagnostic performance, can be effectively improved using a generative pre-trained denoising network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA