Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Med ; 21(4): e1004387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630802

RESUMO

BACKGROUND: Coronavirus Disease 2019 (COVID-19) continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Here, we present projections of COVID-19 hospitalizations and deaths in the United States for the next 2 years under 2 plausible assumptions about immune escape (20% per year and 50% per year) and 3 possible CDC recommendations for the use of annually reformulated vaccines (no recommendation, vaccination for those aged 65 years and over, vaccination for all eligible age groups based on FDA approval). METHODS AND FINDINGS: The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023 and April 15, 2025 under 6 scenarios representing the intersection of considered levels of immune escape and vaccination. Annually reformulated vaccines are assumed to be 65% effective against symptomatic infection with strains circulating on June 15 of each year and to become available on September 1. Age- and state-specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. State and national projections from 8 modeling teams were ensembled to produce projections for each scenario and expected reductions in disease outcomes due to vaccination over the projection period. From April 15, 2023 to April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November to January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% projection interval (PI) [1,438,000, 4,270,000]) hospitalizations and 209,000 (90% PI [139,000, 461,000]) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% confidence interval (CI) [104,000, 355,000]) fewer hospitalizations and 33,000 (95% CI [12,000, 54,000]) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI [29,000, 69,000]) fewer deaths. CONCLUSIONS: COVID-19 is projected to be a significant public health threat over the coming 2 years. Broad vaccination has the potential to substantially reduce the burden of this disease, saving tens of thousands of lives each year.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Hospitalização , SARS-CoV-2 , Vacinação , Humanos , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/epidemiologia , COVID-19/imunologia , Estados Unidos/epidemiologia , Idoso , Hospitalização/estatística & dados numéricos , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Adulto , Adolescente , Adulto Jovem , Criança , Idoso de 80 Anos ou mais , Masculino
2.
Int J High Perform Comput Appl ; 37(1): 4-27, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38603425

RESUMO

This paper describes an integrated, data-driven operational pipeline based on national agent-based models to support federal and state-level pandemic planning and response. The pipeline consists of (i) an automatic semantic-aware scheduling method that coordinates jobs across two separate high performance computing systems; (ii) a data pipeline to collect, integrate and organize national and county-level disaggregated data for initialization and post-simulation analysis; (iii) a digital twin of national social contact networks made up of 288 Million individuals and 12.6 Billion time-varying interactions covering the US states and DC; (iv) an extension of a parallel agent-based simulation model to study epidemic dynamics and associated interventions. This pipeline can run 400 replicates of national runs in less than 33 h, and reduces the need for human intervention, resulting in faster turnaround times and higher reliability and accuracy of the results. Scientifically, the work has led to significant advances in real-time epidemic sciences.

3.
Epidemics ; 47: 100761, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555667

RESUMO

Scenario-based modeling frameworks have been widely used to support policy-making at state and federal levels in the United States during the COVID-19 response. While custom-built models can be used to support one-off studies, sustained updates to projections under changing pandemic conditions requires a robust, integrated, and adaptive framework. In this paper, we describe one such framework, UVA-adaptive, that was built to support the CDC-aligned Scenario Modeling Hub (SMH) across multiple rounds, as well as weekly/biweekly projections to Virginia Department of Health (VDH) and US Department of Defense during the COVID-19 response. Building upon an existing metapopulation framework, PatchSim, UVA-adaptive uses a calibration mechanism relying on adjustable effective transmissibility as a basis for scenario definition while also incorporating real-time datasets on case incidence, seroprevalence, variant characteristics, and vaccine uptake. Through the pandemic, our framework evolved by incorporating available data sources and was extended to capture complexities of multiple strains and heterogeneous immunity of the population. Here we present the version of the model that was used for the recent projections for SMH and VDH, describe the calibration and projection framework, and demonstrate that the calibrated transmissibility correlates with the evolution of the pathogen as well as associated societal dynamics.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/transmissão , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/imunologia , Humanos , SARS-CoV-2/imunologia , Estados Unidos/epidemiologia , Pandemias/prevenção & controle , Vacinas contra COVID-19/imunologia , Virginia/epidemiologia , Modelos Epidemiológicos , Previsões
4.
Artigo em Inglês | MEDLINE | ID: mdl-38774820

RESUMO

We present MacKenzie, a HPC-driven multi-cluster workflow system that was used repeatedly to configure and execute fine-grained US national-scale epidemic simulation models during the COVID-19 pandemic. Mackenzie supported federal and Virginia policymakers, in real-time, for a large number of "what-if" scenarios during the COVID-19 pandemic, and continues to be used to answer related questions as COVID-19 transitions to the endemic stage of the disease. MacKenzie is a novel HPC meta-scheduler that can execute US-scale simulation models and associated workflows that typically present significant big data challenges. The meta-scheduler optimizes the total execution time of simulations in the workflow, and helps improve overall human productivity. As an exemplar of the kind of studies that can be conducted using Mackenzie, we present a modeling study to understand the impact of vaccine-acceptance in controlling the spread of COVID-19 in the US. We use a 288 million node synthetic social contact network (digital twin) spanning all 50 US states plus Washington DC, comprised of 3300 counties, with 12 billion daily interactions. The highly-resolved agent-based model used for the epidemic simulations uses realistic information about disease progression, vaccine uptake, production schedules, acceptance trends, prevalence, and social distancing guidelines. Computational experiments show that, for the simulation workload discussed above, MacKenzie is able to scale up well to 10K CPU cores. Our modeling results show that, when compared to faster and accelerating vaccinations, slower vaccination rates due to vaccine hesitancy cause averted infections to drop from 6.7M to 4.5M, and averted total deaths to drop from 39.4K to 28.2K across the US. This occurs despite the fact that the final vaccine coverage is the same in both scenarios. We also find that if vaccine acceptance could be increased by 10% in all states, averted infections could be increased from 4.5M to 4.7M (a 4.4% improvement) and total averted deaths could be increased from 28.2K to 29.9K (a 6% improvement) nationwide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA