Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(14): 9715-23, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27000487

RESUMO

The non-adiabatic relaxation dynamics of the tertiary cage-amine azabicyclo[2.2.2]octane (ABCO, also known as quinuclidine) have been investigated following 3p Rydberg excitation at 201 nm using femtosecond time-resolved photoelectron imaging (TRPEI). The aim of the study was to investigate the influence of the rigid and symmetric cage structure found in ABCO on the general non-adiabatic relaxation processes commonly seen in other tertiary aliphatic amines (TAAs). Our data is compared with TRPEI results very recently obtained for several structurally less rigid TAA systems [J. O. F. Thompson et al., Chem. Sci., 2016, 7, 1826-1839] and helps to confirm many of the previously reported findings. The experimental results for ABCO in the short-time (<1 ps) regime strongly support earlier conclusions suggesting that planarization about the N-atom is not a prerequisite for efficient 3p-3s internal conversion. Additionally, individual photoelectron peaks within our ABCO data show no temporal shifts in energy. As confirmed by our supporting quantum mechanical calculations, this demonstrates that neither internal conversion within the 3p manifold or significant conformational re-organization are possible in the ABCO system. This result therefore lends strong additional support to the active presence of such dynamical effects in other, less conformationally restricted TAA species, where photoelectron peak shifts are commonly observed. Finally, the extremely long (>1 ns) 3s Rydberg state lifetime seen in ABCO (relative to other TAA systems at similar excitation energies) serves to illustrate the large influence of symmetry and conformational rigidity on intramolecular vibrational redistribution processes previously implicated in mediating this aspect of the overall relaxation dynamics.

2.
Phys Chem Chem Phys ; 18(36): 25070-25079, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711695

RESUMO

We have investigated the electronic relaxation dynamics of gas-phase piperidine (a secondary aliphatic amine) using time-resolved photoelectron imaging. Following 200 nm excitation, spectrally sharp and highly anisotropic photoelectron data reveal ultrafast (60 fs) internal conversion between the initially excited 3px Rydberg state and the lower-lying 3s Rydberg state, mediated by the evolution of nσ* valence character along the 3px N-C bond. This behaviour is in good agreement with previously reported findings for several tertiary aliphatic amines. In contrast to the these systems, however, much broader photoelectron signals exhibiting only very small angular anisotropy and two distinct decay timescales (180 fs and 1.7 ps) were also observed. As confirmed by our supporting calculations, this is attributable to nσ* valence character now evolving along the N-H stretching coordinate within the 3s Rydberg state as the molecule starts dissociating to yield H atom photoproducts in conjunction with ground state piperidinyl radicals. By analogy with systems such as ammonia and morpholine, we conclude this event may occur either promptly or, alternatively, via a "frustrated" process where the system repeatedly traverses the upper cone of a conical intersection with the ground state until the required region of phase space is sampled to facilitate non-adiabatic population transfer. Our findings reveal the role of several different nuclear coordinate motions in driving stepwise internal conversion across multiple potential energy surfaces and the distinct photoionization signatures that are associated with these processes.

3.
Chemphyschem ; 15(2): 249-59, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24375886

RESUMO

The absorption of light by molecules can induce ultrafast dynamics and coupling of electronic and nuclear vibrational motion. The ultrafast nature in many cases rests on the importance of several potential energy surfaces in guiding the nuclear motion-a concept of central importance in many aspects of chemical reaction dynamics. This Minireview focuses on the non-ergodic nature of internal conversion, that is, on the concept that the nuclear dynamics only sample a reduced phase space, potentially resulting in localization of the dynamics in real space. A series of results that highlight the nonstatistical nature of the excited-state deactivation process is presented. The examples are categorized into four groups. 1) Localization of the energy in one degree of freedom in S2 →S1 transitions, in which the transition is either determined by the time spent in the S2 →S1 coupling region or by the time it takes to reach it. 2) Localization of energy into a single reactive mode, which is dictated by the internal conversion process. 3) Initiation of the internal conversion by activation of a single complex motion, which then specifically couples to a reactive mode. 4) Nonstatistical internal conversion as a tool to accomplish biomolecular stability. Herein, the discussion on nonstatistical internal conversion in DNA as a mechanism to eliminate electronic excitation energy is extended to include molecules with an S-S bond as a model of the disulfide bridge in peptides. All of these examples are summed up in Kasha's rule. For systems with multiple degrees of freedom it will be possible to locate an appropriate motion somewhere in phase space that will take the wavepacket to the coupling region and facilitate an ultrafast transition to S1. Once at S1, the momentum of the wavepacket is lost and the only options left are the statistical processes of reaction or light emission.

4.
J Am Chem Soc ; 134(50): 20279-81, 2012 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-23210550

RESUMO

For a molecule to survive evolution and to become a key building block in nature, photochemical stability is essential. The photolytically weak S-S bond does not immediately seem to possess that ability. We mapped the real-time motion of the two sulfur radicals that result from disulfide photolysis on the femtosecond time scale and found the reason for the existence of the S-S bridge as a natural building block in folded structures. The sulfur atoms will indeed move apart on the excited state but only to oscillate around the S-S center of mass. At long S-S distances, there is a strong coupling to the ground state, and the oscillatory motion enables the molecules to continuously revisit that particular region of the potential energy surface. When a structural feature such as a ring prevents the sulfur radicals from flying apart and thus assures a sufficient residence time in the active region of the potential energy surface, the electronic energy is converted into less harmful vibrational energy, thereby restoring the S-S bond in the ground state.


Assuntos
Dissulfetos/química , Proteínas/química , Modelos Moleculares , Processos Fotoquímicos , Enxofre/química
5.
Chem Sci ; 7(3): 1826-1839, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29899904

RESUMO

Time-resolved photoelectron imaging was used to study non-adiabatic relaxation dynamics in N,N-dimethylisopropylamine, N,N-dimethylpropylamine and N-methylpyrrolidine following excitation at 200 nm. This series of tertiary aliphatic amines are all of similar chemical makeup, but exhibit differences in their structure - being branched, straight-chain and cyclic, respectively. Our experimental investigation, supported by extensive theoretical calculations, provides considerable new insight into the nature of the internal conversion processes that mediate dynamical evolution between electronic states of predominantly Rydberg character in this important class of model photochemical systems. In particular, the angle-resolved data afforded by the imaging approach (something not previously reported for tertiary aliphatic amines) offers novel and highly-detailed mechanistic information about the overall relaxation pathway. Strikingly, both the experimental and theoretical findings suggest that a critical factor driving the non-adiabatic dynamics is the evolution of valence character along an N-C stretching coordinate within a member of the 3p manifold. This is in stark contrast to primary and secondary amines, as well as many other small hetero-atom containing organic species, where evolution of valence character within the 3s state is now a well-established phenomenon implicated in mediating ultrafast non-adiabatic photochemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA