Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 39(6): e102301, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32080880

RESUMO

The endolysosomal system fulfils a myriad of cellular functions predicated on regulated membrane identity progressions, collectively termed maturation. Mature or "late" endosomes are designated by small membrane-bound GTPases Rab7 and Arl8b, which can either operate independently or collaborate to form a joint compartment. Whether, and how, Rab7 and Arl8b resolve this hybrid identity compartment to regain functional autonomy is unknown. Here, we report that Arl8b employs its effector SKIP to instigate inactivation and removal of Rab7 from select membranes. We find that SKIP interacts with Rab7 and functions as its negative effector, delivering the cognate GAP, TBC1D15. Recruitment of TBC1D15 to SKIP occurs via the HOPS complex, whose assembly is facilitated by contacts between Rab7 and the KMI motif of SKIP. Consequently, SKIP mediates reinstatement of single identity Arl8b sub-compartment through an ordered Rab7-to-Arl8b handover, and, together with Rab7's positive effector RILP, enforces spatial, temporal and morphological compartmentalization of endolysosomal organelles.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Fatores de Ribosilação do ADP/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Compartimento Celular , Endossomos/metabolismo , Proteínas Ativadoras de GTPase/genética , Células HEK293 , Humanos , Lisossomos/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
2.
J Autoimmun ; 146: 103219, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696927

RESUMO

Tissue repair is disturbed in fibrotic diseases like systemic sclerosis (SSc), where the deposition of large amounts of extracellular matrix components such as collagen interferes with organ function. LAIR-1 is an inhibitory collagen receptor highly expressed on tissue immune cells. We questioned whether in SSc, impaired LAIR-1-collagen interaction is contributing to the ongoing inflammation and fibrosis. We found that SSc patients do not have an intrinsic defect in LAIR-1 expression or function. Instead, fibroblasts from healthy controls and SSc patients stimulated by soluble factors that drive inflammation and fibrosis in SSc deposit disorganized collagen products in vitro, which are dysfunctional LAIR-1 ligands. This is dependent of matrix metalloproteinases and platelet-derived growth factor receptor signaling. In support of a non-redundant role of LAIR-1 in the control of fibrosis, we found that LAIR-1-deficient mice have increased skin fibrosis in response to repeated injury and in the bleomycin mouse model for SSc. Thus, LAIR-1 represents an essential control mechanism for tissue repair. In fibrotic disease, excessive collagen degradation may lead to a disturbed feedback loop. The presence of functional LAIR-1 in patients provides a therapeutic opportunity to reactivate this intrinsic negative feedback mechanism in fibrotic diseases.


Assuntos
Colágeno , Modelos Animais de Doenças , Fibroblastos , Fibrose , Camundongos Knockout , Receptores Imunológicos , Escleroderma Sistêmico , Animais , Humanos , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Camundongos , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Colágeno/metabolismo , Fibroblastos/metabolismo , Bleomicina/efeitos adversos , Pele/patologia , Pele/metabolismo , Pele/imunologia , Transdução de Sinais , Masculino , Feminino , Células Cultivadas
3.
PLoS Biol ; 19(7): e3001287, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34283825

RESUMO

The accumulation of α-synuclein (α-syn) aggregates in specific brain regions is a hallmark of synucleinopathies including Parkinson disease (PD). α-Syn aggregates propagate in a "prion-like" manner and can be transferred inside lysosomes to recipient cells through tunneling nanotubes (TNTs). However, how lysosomes participate in the spreading of α-syn aggregates is unclear. Here, by using super-resolution (SR) and electron microscopy (EM), we find that α-syn fibrils affect the morphology of lysosomes and impair their function in neuronal cells. In addition, we demonstrate that α-syn fibrils induce peripheral redistribution of lysosomes, likely mediated by transcription factor EB (TFEB), increasing the efficiency of α-syn fibrils' transfer to neighboring cells. We also show that lysosomal membrane permeabilization (LMP) allows the seeding of soluble α-syn in cells that have taken up α-syn fibrils from the culture medium, and, more importantly, in healthy cells in coculture, following lysosome-mediated transfer of the fibrils. Moreover, we demonstrate that seeding occurs mainly at lysosomes in both donor and acceptor cells, after uptake of α-syn fibrils from the medium and following their transfer, respectively. Finally, by using a heterotypic coculture system, we determine the origin and nature of the lysosomes transferred between cells, and we show that donor cells bearing α-syn fibrils transfer damaged lysosomes to acceptor cells, while also receiving healthy lysosomes from them. These findings thus contribute to the elucidation of the mechanism by which α-syn fibrils spread through TNTs, while also revealing the crucial role of lysosomes, working as a Trojan horse for both seeding and propagation of disease pathology.


Assuntos
Lisossomos/metabolismo , Nanotubos , Dobramento de Proteína , alfa-Sinucleína/metabolismo , Animais , Permeabilidade da Membrana Celular , Técnicas de Cocultura , Humanos , Lisossomos/ultraestrutura , Microscopia Eletrônica
4.
J Inherit Metab Dis ; 45(2): 353-365, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34671987

RESUMO

Inborn errors of metabolism (IEMs) comprise a diverse group of individually rare monogenic disorders that affect metabolic pathways. Mutations lead to enzymatic deficiency or dysfunction, which results in intermediate metabolite accumulation or deficit leading to disease phenotypes. Currently, treatment options for many IEMs are insufficient. Rarity of individual IEMs hampers therapy development and phenotypic and genetic heterogeneity suggest beneficial effects of personalized approaches. Recently, cultures of patient-own liver-derived intrahepatic cholangiocyte organoids (ICOs) have been established. Since most metabolic genes are expressed in the liver, patient-derived ICOs represent exciting possibilities for in vitro modeling and personalized drug testing for IEMs. However, the exact application range of ICOs remains unclear. To address this, we examined which metabolic pathways can be studied with ICOs and what the potential and limitations of patient-derived ICOs are to model metabolic functions. We present functional assays in patient ICOs with defects in branched-chain amino acid metabolism (methylmalonic acidemia), copper metabolism (Wilson disease), and transporter defects (cystic fibrosis). We discuss the broad range of functional assays that can be applied to ICOs, but also address the limitations of these patient-specific cell models. In doing so, we aim to guide the selection of the appropriate cell model for studies of a specific disease or metabolic process.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Organoides , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Humanos , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Redes e Vias Metabólicas , Organoides/metabolismo
5.
J Cell Sci ; 132(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092635

RESUMO

Multisubunit tethering complexes (MTCs) are multitasking hubs that form a link between membrane fusion, organelle motility and signaling. CORVET, CHEVI and HOPS are MTCs of the endo-lysosomal system. They regulate the major membrane flows required for endocytosis, lysosome biogenesis, autophagy and phagocytosis. In addition, individual subunits control complex-independent transport of specific cargoes and exert functions beyond tethering, such as attachment to microtubules and SNARE activation. Mutations in CHEVI subunits lead to arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, while defects in CORVET and, particularly, HOPS are associated with neurodegeneration, pigmentation disorders, liver malfunction and various forms of cancer. Diseases and phenotypes, however, vary per affected subunit and a concise overview of MTC protein function and associated human pathologies is currently lacking. Here, we provide an integrated overview on the cellular functions and pathological defects associated with CORVET, CHEVI or HOPS proteins, both with regard to their complexes and as individual subunits. The combination of these data provides novel insights into how mutations in endo-lysosomal proteins lead to human pathologies.


Assuntos
Endossomos/metabolismo , Lisossomos/metabolismo , Animais , Artrogripose/metabolismo , Colestase/metabolismo , Homeostase , Humanos , Mutação , Proteínas/genética , Proteínas/metabolismo , Insuficiência Renal/metabolismo
6.
EMBO Rep ; 20(10): e48014, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31432621

RESUMO

The autophagic clearance of damaged lysosomes by lysophagy involves extensive modification of the organelle with ubiquitin, but the underlying ubiquitination machinery is still poorly characterized. Here, we use an siRNA screening approach and identify human UBE2QL1 as a major regulator of lysosomal ubiquitination, lysophagy, and cell survival after lysosomal damage. UBE2QL1 translocates to permeabilized lysosomes where it associates with damage sensors, ubiquitination targets, and lysophagy effectors. UBE2QL1 knockdown reduces ubiquitination and accumulation of the critical autophagy receptor p62 and abrogates recruitment of the AAA-ATPase VCP/p97, which is essential for efficient lysophagy. Crucially, it affects association of LC3B with damaged lysosomes indicating that autophagosome formation was impaired. Already in unchallenged cells, depletion of UBE2QL1 leads to increased lysosomal damage, mTOR dissociation from lysosomes, and TFEB activation pointing to a role in lysosomal homeostasis. In line with this, mutation of the homologue ubc-25 in Caenorhabditis elegans exacerbates lysosome permeability in worms lacking the lysosome stabilizing protein SCAV-3/LIMP2. Thus, UBE2QL1 coordinates critical steps in the acute endolysosomal damage response and is essential for maintenance of lysosomal integrity.


Assuntos
Autofagia , Endossomos/metabolismo , Lisossomos/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Adenosina Trifosfatases , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Sobrevivência Celular , Endossomos/ultraestrutura , Galectinas/metabolismo , Células HeLa , Humanos , Lisina/metabolismo , Lisossomos/ultraestrutura , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares , Permeabilidade , RNA Interferente Pequeno/metabolismo , Proteína Sequestossoma-1/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Ubiquitinas/metabolismo
7.
Nat Rev Mol Cell Biol ; 10(9): 623-35, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19672277

RESUMO

Lysosomes are the primary catabolic compartments of eukaryotic cells. They degrade extracellular material that has been internalized by endocytosis and intracellular components that have been sequestered by autophagy. In addition, specialized cells contain lysosome-related organelles that store and secrete proteins for cell-type-specific functions. The functioning of a healthy cell is dependent on the proper targeting of newly synthesized lysosomal proteins. Accumulating evidence suggests that there are multiple lysosomal delivery pathways that together allow the regulated and sequential deposition of lysosomal components. The importance of lysosomal trafficking pathways is emphasized by recent findings that reveal new roles for lysosomal membrane proteins in cellular physiology and in an increasing number of diseases that are characterized by defects in lysosome biogenesis.


Assuntos
Lisossomos/fisiologia , Proteínas de Membrana/metabolismo , Proteínas/metabolismo , Animais , Endocitose/fisiologia , Humanos , Biogênese de Organelas , Fagocitose
8.
J Am Soc Nephrol ; 31(9): 2044-2064, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32764142

RESUMO

BACKGROUND: APOL1 is found in human kidney podocytes and endothelia. Variants G1 and G2 of the APOL1 gene account for the high frequency of nondiabetic CKD among African Americans. Proposed mechanisms of kidney podocyte cytotoxicity resulting from APOL1 variant overexpression implicate different subcellular compartments. It is unclear where endogenous podocyte APOL1 resides, because previous immunolocalization studies utilized overexpressed protein or commercially available antibodies that crossreact with APOL2. This study describes and distinguishes the locations of both APOLs. METHODS: Immunohistochemistry, confocal and immunoelectron microscopy, and podocyte fractionation localized endogenous and transfected APOL1 using a large panel of novel APOL1-specific mouse and rabbit monoclonal antibodies. RESULTS: Both endogenous podocyte and transfected APOL1 isoforms vA and vB1 (and a little of isoform vC) localize to the luminal face of the endoplasmic reticulum (ER) and to the cell surface, but not to mitochondria, endosomes, or lipid droplets. In contrast, APOL2, isoform vB3, and most vC of APOL1 localize to the cytoplasmic face of the ER and are consequently absent from the cell surface. APOL1 knockout podocytes do not stain for APOL1, attesting to the APOL1-specificity of the antibodies. Stable re-transfection of knockout podocytes with inducible APOL1-G0, -G1, and -G2 showed no differences in localization among variants. CONCLUSIONS: APOL1 is found in the ER and plasma membrane, consistent with either the ER stress or surface cation channel models of APOL1-mediated cytotoxicity. The surface localization of APOL1 variants potentially opens new therapeutic targeting avenues.


Assuntos
Apolipoproteína L1/análise , Membrana Celular/química , Retículo Endoplasmático/química , Podócitos/química , Animais , Anticorpos/imunologia , Apolipoproteína L1/imunologia , Apolipoproteínas L/análise , Células COS , Células Cultivadas , Chlorocebus aethiops , Reações Cruzadas , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Podócitos/ultraestrutura
9.
Traffic ; 19(5): 354-369, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29451726

RESUMO

Live-cell correlative light-electron microscopy (live-cell-CLEM) integrates live movies with the corresponding electron microscopy (EM) image, but a major challenge is to relate the dynamic characteristics of single organelles to their 3-dimensional (3D) ultrastructure. Here, we introduce focused ion beam scanning electron microscopy (FIB-SEM) in a modular live-cell-CLEM pipeline for a single organelle CLEM. We transfected cells with lysosomal-associated membrane protein 1-green fluorescent protein (LAMP-1-GFP), analyzed the dynamics of individual GFP-positive spots, and correlated these to their corresponding fine-architecture and immediate cellular environment. By FIB-SEM we quantitatively assessed morphological characteristics, like number of intraluminal vesicles and contact sites with endoplasmic reticulum and mitochondria. Hence, we present a novel way to integrate multiple parameters of subcellular dynamics and architecture onto a single organelle, which is relevant to address biological questions related to membrane trafficking, organelle biogenesis and positioning. Furthermore, by using CLEM to select regions of interest, our method allows for targeted FIB-SEM, which significantly reduces time required for image acquisition and data processing.


Assuntos
Lisossomos/ultraestrutura , Biogênese de Organelas , Tomografia com Microscopia Eletrônica/métodos , Células HeLa , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Imagem Óptica/métodos
10.
Nature ; 509(7499): 240-4, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24695226

RESUMO

The detection of microbial pathogens involves the recognition of conserved microbial components by host cell sensors such as Toll-like receptors (TLRs) and NOD-like receptors (NLRs). TLRs are membrane receptors that survey the extracellular environment for microbial infections, whereas NLRs are cytosolic complexes that detect microbial products that reach the cytosol. Upon detection, both sensor classes trigger innate inflammatory responses and allow the engagement of adaptive immunity. Endo-lysosomes are the entry sites for a variety of pathogens, and therefore the sites at which the immune system first senses their presence. Pathogens internalized by endocytosis are well known to activate TLRs 3 and 7-9 that are localized to endocytic compartments and detect ligands present in the endosomal lumen. Internalized pathogens also activate sensors in the cytosol such as NOD1 and NOD2 (ref. 2), indicating that endosomes also provide for the translocation of bacterial components across the endosomal membrane. Despite the fact that NOD2 is well understood to have a key role in regulating innate immune responses and that mutations at the NOD2 locus are a common risk factor in inflammatory bowel disease and possibly other chronic inflammatory states, little is known about how its ligands escape from endosomes. Here we show that two endo-lysosomal peptide transporters, SLC15A3 and SLC15A4, are preferentially expressed by dendritic cells, especially after TLR stimulation. The transporters mediate the egress of bacterially derived components, such as the NOD2 cognate ligand muramyl dipeptide (MDP), and are selectively required for NOD2 responses to endosomally derived MDP. Enhanced expression of the transporters also generates endosomal membrane tubules characteristic of dendritic cells, which further enhanced the NOD2-dependent response to MDP. Finally, sensing required the recruitment of NOD2 and its effector kinase RIPK2 (refs 8, 9) to the endosomal membrane, possibly by forming a complex with SLC15A3 or SLC15A4. Thus, dendritic cell endosomes are specialized platforms for both the lumenal and cytosolic sensing of pathogens.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Endossomos/imunologia , Endossomos/metabolismo , Proteína Adaptadora de Sinalização NOD2/imunologia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Salmonella typhimurium/imunologia , Acetilmuramil-Alanil-Isoglutamina/imunologia , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Animais , Proteínas de Transporte/metabolismo , Citoplasma/imunologia , Citoplasma/metabolismo , Citoplasma/microbiologia , Células Dendríticas/citologia , Imunidade Inata , Inflamação , Doenças Inflamatórias Intestinais/genética , Ligantes , Lisossomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fagossomos/imunologia , Fagossomos/metabolismo
11.
J Lipid Res ; 60(10): 1787-1800, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31315900

RESUMO

Dietary lipids are taken up as FAs by the intestinal epithelium and converted by diacylglycerol acyltransferase (DGAT) enzymes into triglycerides, which are packaged in chylomicrons or stored in cytoplasmic lipid droplets (LDs). DGAT1-deficient patients suffer from vomiting, diarrhea, and protein losing enteropathy, illustrating the importance of this process to intestinal homeostasis. Previously, we have shown that DGAT1 deficiency causes decreased LD formation and resistance to unsaturated FA lipotoxicity in patient-derived intestinal organoids. However, LD formation was not completely abolished in patient-derived organoids, suggesting the presence of an alternative mechanism for LD formation. Here, we show an unexpected role for DGAT2 in lipid metabolism, as DGAT2 partially compensates for LD formation and lipotoxicity in DGAT1-deficient intestinal stem cells. Furthermore, we show that (un)saturated FA-induced lipotoxicity is mediated by ER stress. More importantly, we demonstrate that overexpression of DGAT2 fully compensates for the loss of DGAT1 in organoids, indicating that induced DGAT2 expression in patient cells may serve as a therapeutic target in the future.


Assuntos
Diacilglicerol O-Aciltransferase/deficiência , Diacilglicerol O-Aciltransferase/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Intestinos/citologia , Lipídeos/efeitos adversos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Pré-Escolar , Feminino , Humanos , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Masculino
12.
Neurobiol Dis ; 127: 419-431, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30930081

RESUMO

Hereditary spastic paraplegia is a spastic gait disorder that arises from degeneration of corticospinal axons. The subtype SPG48 is associated with mutations in the zeta subunit of the adaptor protein complex five (AP5). AP5 function and the pathophysiology of SPG48 are only poorly understood. Here, we report an AP5 zeta knockout mouse, which shows an age-dependent degeneration of corticospinal axons. Our analysis of knockout fibroblasts supports a trafficking defect from late endosomes to the transGolgi network and reveals a structural defect of the Golgi. We further show that both autophagic flux and the recycling of lysosomes from autolysosomes were impaired in knockout cells. In vivo, we observe an increase of autophagosomes and autolysosomes and, at later stages, the accumulation of intracellular waste in neurons. Taken together, we propose that loss of AP5 function blocks autophagy and thus leads to the aberrant accumulation of autophagic cargo, which finally results in axon degeneration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/fisiologia , Neurônios/metabolismo , Paraplegia Espástica Hereditária/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Modelos Animais de Doenças , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos , Camundongos Knockout , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/patologia , Tratos Piramidais/metabolismo , Tratos Piramidais/patologia , Paraplegia Espástica Hereditária/genética
13.
J Cell Sci ; 129(3): 557-68, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26698217

RESUMO

How, in the absence of a functional mannose 6-phosphate (Man-6-P)-signal-dependent transport pathway, some acid hydrolases remain sorted to endolysosomes in the brain is poorly understood. We demonstrate that cathepsin D binds to mouse SEZ6L2, a type 1 transmembrane protein predominantly expressed in the brain. Studies of the subcellular trafficking of SEZ6L2, and its silencing in a mouse neuroblastoma cell line reveal that SEZ6L2 is involved in the trafficking of cathepsin D to endosomes. Moreover, SEZ6L2 can partially correct the cathepsin D hypersecretion resulting from the knockdown of UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase in HeLa cells (i.e. in cells that are unable to synthesize Man-6-P signals). Interestingly, cleavage of SEZ6L2 by cathepsin D generates an N-terminal soluble fragment that induces neurite outgrowth, whereas its membrane counterpart prevents this. Taken together, our findings highlight that SEZ6L2 can serve as receptor to mediate the sorting of cathepsin D to endosomes, and suggest that proteolytic cleavage of SEZ6L2 by cathepsin D modulates neuronal differentiation.


Assuntos
Catepsina D/metabolismo , Proteínas de Membrana/metabolismo , Neuritos/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Proteínas de Transporte/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Endossomos/metabolismo , Endossomos/fisiologia , Células HeLa , Humanos , Lisossomos/metabolismo , Lisossomos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuritos/fisiologia , Neuroblastoma/metabolismo , Neuroblastoma/fisiopatologia , Transporte Proteico/fisiologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Difosfato de Uridina/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(40): 12408-13, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392529

RESUMO

Microvillus inclusion disease (MVID) is a rare intestinal enteropathy with an onset within a few days to months after birth, resulting in persistent watery diarrhea. Mutations in the myosin Vb gene (MYO5B) have been identified in the majority of MVID patients. However, the exact pathophysiology of MVID still remains unclear. To address the specific role of MYO5B in the intestine, we generated an intestine-specific conditional Myo5b-deficient (Myo5bfl/fl;Vil-CreERT2) mouse model. We analyzed intestinal tissues and cultured organoids of Myo5bfl/fl;Vil-CreERT2 mice by electron microscopy, immunofluorescence, and immunohistochemistry. Our data showed that Myo5bfl/fl;Vil-CreERT2 mice developed severe diarrhea within 4 d after tamoxifen induction. Periodic Acid Schiff and alkaline phosphatase staining revealed subapical accumulation of intracellular vesicles in villus enterocytes. Analysis by electron microscopy confirmed an almost complete absence of apical microvilli, the appearance of microvillus inclusions, and enlarged intercellular spaces in induced Myo5bfl/fl;Vil-CreERT2 intestines. In addition, we determined that MYO5B is involved not only in apical but also basolateral trafficking of proteins. The analysis of the intestine during the early onset of the disease revealed that subapical accumulation of secretory granules precedes occurrence of microvillus inclusions, indicating involvement of MYO5B in early differentiation of epithelial cells. By comparing our data with a novel MVID patient, we conclude that our mouse model completely recapitulates the intestinal phenotype of human MVID. This includes severe diarrhea, loss of microvilli, occurrence of microvillus inclusions, and subapical secretory granules. Thus, loss of MYO5B disturbs both apical and basolateral trafficking of proteins and causes MVID in mice.


Assuntos
Síndromes de Malabsorção/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Miosina Tipo V/metabolismo , Animais , Modelos Animais de Doenças , Enterócitos/metabolismo , Enterócitos/patologia , Enterócitos/ultraestrutura , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/ultraestrutura , Feminino , Humanos , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Intestinos/patologia , Intestinos/ultraestrutura , Síndromes de Malabsorção/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microvilosidades/metabolismo , Microvilosidades/ultraestrutura , Mucolipidoses/induzido quimicamente , Miosina Tipo V/genética , Técnicas de Cultura de Órgãos , Transporte Proteico/genética , Transporte Proteico/fisiologia , Tamoxifeno
16.
Traffic ; 16(12): 1288-305, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26403612

RESUMO

Lysosomes are the main degradative compartments of eukaryotic cells. The CORVET and HOPS tethering complexes are well known for their role in membrane fusion in the yeast endocytic pathway. Yeast Vps33p is part of both complexes, and has two mammalian homologues: Vps33A and Vps33B. Vps33B is required for recycling of apical proteins in polarized cells and a causative gene for ARC syndrome. Here, we investigate whether Vps33B is also required in the degradative pathway. By fluorescence and electron microscopy we show that Vps33B depletion in HeLa cells leads to significantly increased numbers of late endosomes that together with lysosomes accumulate in the perinuclear region. Degradation of endocytosed cargo is impaired in these cells. By electron microscopy we show that endocytosed BSA-gold reaches late endosomes, but is decreased in lysosomes. The increase in late endosome numbers and the lack of internalized cargo in lysosomes are indicative for a defect in late endosomal-lysosomal fusion events, which explains the observed decrease in cargo degradation. A corresponding phenotype was found after Vps33A knock down, which in addition also resulted in decreased lysosome numbers. We conclude that Vps33B, in addition to its role in endosomal recycling, is required for late endosomal-lysosomal fusion events.


Assuntos
Endocitose/fisiologia , Endossomos/metabolismo , Lisossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Endossomos/ultraestrutura , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Lisossomos/ultraestrutura , Fusão de Membrana/fisiologia , Microscopia Eletrônica , Microscopia de Fluorescência , Transporte Proteico , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
18.
J Biol Chem ; 290(51): 30280-90, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26463206

RESUMO

Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail in yeast where their sequential membrane targeting and assembly is well understood. Mammalian CORVET and HOPS subunits significantly differ from their yeast homologues, and novel proteins with high homology to CORVET/HOPS subunits have evolved. However, an analysis of the molecular interactions between these subunits in mammals is lacking. Here, we provide a detailed analysis of interactions within the mammalian CORVET and HOPS as well as an additional endosomal-targeting complex (VIPAS39-VPS33B) that does not exist in yeast. We show that core interactions within CORVET and HOPS are largely conserved but that the membrane-targeting module in HOPS has significantly changed to accommodate binding to mammalian-specific RAB7 interacting lysosomal protein (RILP). Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-associated mutations in VPS33B selectively disrupt recruitment to late endosomes by RILP or binding to its partner VIPAS39. Within the shared core of CORVET/HOPS, we find that VPS11 acts as a molecular switch that binds either CORVET-specific TGFBRAP1 or HOPS-specific VPS39/RILP thereby allowing selective targeting of these tethering complexes to early or late endosomes to time fusion events in the endo/lysosomal pathway.


Assuntos
Endossomos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Artrogripose/genética , Artrogripose/metabolismo , Artrogripose/patologia , Proteínas Relacionadas à Autofagia , Linhagem Celular , Colestase/genética , Colestase/metabolismo , Colestase/patologia , Endossomos/genética , Endossomos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/genética , Mutação de Sentido Incorreto , Insuficiência Renal/genética , Insuficiência Renal/metabolismo , Insuficiência Renal/patologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
19.
Nature ; 465(7300): 942-6, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20526321

RESUMO

Autophagy is an evolutionarily conserved process by which cytoplasmic proteins and organelles are catabolized. During starvation, the protein TOR (target of rapamycin), a nutrient-responsive kinase, is inhibited, and this induces autophagy. In autophagy, double-membrane autophagosomes envelop and sequester intracellular components and then fuse with lysosomes to form autolysosomes, which degrade their contents to regenerate nutrients. Current models of autophagy terminate with the degradation of the autophagosome cargo in autolysosomes, but the regulation of autophagy in response to nutrients and the subsequent fate of the autolysosome are poorly understood. Here we show that mTOR signalling in rat kidney cells is inhibited during initiation of autophagy, but reactivated by prolonged starvation. Reactivation of mTOR is autophagy-dependent and requires the degradation of autolysosomal products. Increased mTOR activity attenuates autophagy and generates proto-lysosomal tubules and vesicles that extrude from autolysosomes and ultimately mature into functional lysosomes, thereby restoring the full complement of lysosomes in the cell-a process we identify in multiple animal species. Thus, an evolutionarily conserved cycle in autophagy governs nutrient sensing and lysosome homeostasis during starvation.


Assuntos
Autofagia/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Fenômenos Fisiológicos da Nutrição , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Células HeLa , Homeostase/fisiologia , Humanos , Lisossomos/ultraestrutura , Ratos , Transdução de Sinais , Serina-Treonina Quinases TOR , Células Vero
20.
Traffic ; 14(2): 219-32, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23167963

RESUMO

The homotypic fusion and protein sorting (HOPS) complex is a multisubunit tethering complex that in yeast regulates membrane fusion events with the vacuole, the yeast lysosome. Mammalian homologs of all HOPS components have been found, but little is known about their function. Here, we studied the role of hVps41 and hVps39, two components of the putative human HOPS complex, in the endo-lysosomal pathway of human cells. By expressing hemagglutinin (HA)-tagged constructs, we show by immunoelectron microscopy (immunoEM) that both hVps41 and hVps39 associate with the limiting membrane of late endosomes as well as lysosomes. Small interference RNA (siRNA)-mediated knockdown of hVps41 or hVps39 resulted in an accumulation of late endosomes, a depletion in the number of lysosomes and a block in the degradation of endocytosed cargo. Lysosomal pH and cathepsin B activity remained unaltered in these conditions. By immunoEM we found that hVps41 or hVps39 knockdown impairs homotypic fusion between late endosomes as well as heterotypic fusion between late endosomes and lysosomes. Thus, our data show that both hVps41 and hVps39 are required for late endosomal-lysosomal fusion events and the delivery of endocytic cargo to lysosomes in human cells.


Assuntos
Endossomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fusão de Membrana/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas Relacionadas à Autofagia , Catepsina B/metabolismo , Endocitose , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Membranas Intracelulares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisossomos/metabolismo , Proteólise , RNA Interferente Pequeno , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA