RESUMO
The metabolic preference of cells toward glycolysis often indicates a diseased state ranging from cancer to other dysfunctions. When a particular cell type utilizes glycolysis as a major energy production pathway, their mitochondria become impaired resulting a cascade of events which eventually contributes to resistance toward therapies to tackle such diseases. In abnormal tissues such as seen in the tumor microenvironment, when cancer cells utilize glycolysis, other cell types such as the immune cells switch their metabolism and prefer such glycolysis. As a result, utilization of therapies to destroy glycolytic preferences by cancer cells results in destruction of immune cells contributing toward an immunosuppressive phenotype. Thus, development of targeted, trackable, comparatively stable glycolysis inhibitors is urgently needed to manage diseases where glycolysis is preferred for disease progression. No glycolysis inhibitor exists which can be tracked and packaged in a delivery vehicle for efficient targeted deployment. Here, we report synthesis, characterization, and formulation of an all-in-one glycolysis inhibitor and document the therapeutic potential along with trackability and glycolysis inhibition of this inhibitor by utilizing an in vivo breast cancer model.
Assuntos
Neoplasias , Humanos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Neoplasias/tratamento farmacológico , Glicólise/genética , Microambiente TumoralRESUMO
Here in the present article, the state of art for nanotechnology-enabled nanogel theranostics and the upcoming concepts in nanogel-based therapeutics are summarized. The benefits, innovation, and prospects of nanogel technology are also briefly presented.
Assuntos
Nanogéis , Medicina de Precisão , Imagem Óptica , Fluorescência , Humanos , Sistemas de Liberação de MedicamentosRESUMO
As the COVID-19 pandemic has continued to spread, studies have shown that hospitalized COVID-19 patients are at significant risk for developing acute kidney injury (AKI), which can cause increased morbidity, the need for dialysis treatment, chronic kidney diseases, and even death. In this paper, we present a proof-of-concept study for the utilization of combination therapeutic-loaded dual-targeted biodegradable nanoparticles (NPs) to treat concurrent AKI and COVID-19 in patients by delivering the therapeutics across the gut epithelial barrier and to the kidney, in order to lower the viral load as well as reduce the symptoms of AKI. Despite recent vaccination efforts and the end of the COVID-19 pandemic in sight, problems related to the long-term effects of COVID-19 will continue to persist, including impacts on patients suffering from AKI and other chronic renal conditions. Therefore, the dual-targeted blended polymeric NP developed in this study to treat concurrent COVID-19 infection and AKI is a useful proof-of-concept nanoplatform for future treatments of these complications.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Rim , Pandemias , Polímeros , Diálise Renal , Estudos RetrospectivosRESUMO
The success of nanoparticle-mediated delivery of antioxidant and antiinflammatory-based neuroprotectants to the brain to improve neuronal functions in neurodegenerative diseases has demonstrated lesser impact instead of achieving its full potential. We hypothesized that these failures were due to a combination of parameters, such as: (i) unavailability of a delivery vehicle, which can reproducibly and efficiently transport through the brain capillary endothelium; (ii) inefficient uptake of therapeutic nanoparticles in the neuronal cell population; and (iii) limited ability of a single nanoparticle to cross the two most-impermeable biological barriers, the blood-brain barrier and mitochondrial double membrane, so that a nanoparticle can travel through the brain endothelial barrier to the mitochondria of target cells where oxidative damage is localized. Herein, we demonstrate optimization of a biodegradable nanoparticle for efficient brain accumulation and protection of astrocytes from oxidative damage and mitochondrial dysfunctions to enhance the neuroprotection ability of astrocytes toward neurons using neurodegeneration characteristics in SOD1G93A rats. This biodegradable nanomedicine platform with the ability to accumulate in the brain has the potential to bring beneficial effects in neurodegenerative diseases by modulating the stars, astrocytes in the brain, to enhance their neuroprotective actions.
Assuntos
Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Nanotecnologia/métodos , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Nanomedicina , Nanopartículas/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Neuroproteção/fisiologia , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos TransgênicosRESUMO
Cisplatin is a major chemotherapeutic that continues to have a significant impact in the treatment of more than 50% of all cancers. Since its Food and Drug Administration approval in 1978 for the treatment of advanced ovarian and bladder cancer, this chemotherapeutic has made significant strides and its application has been extended to a large variety of other cancers. However, the vast majority of patients who receive cisplatin therapy often suffer from nephrotoxicity, neurotoxicity, nausea, and ototoxicity. Numerous methods currently exist for overcoming nephrotoxicity- and nausea-related side effects, but there is no clear prevention to fight ototoxicity and neurotoxicity. In this work, we examined Platin- A, a prodrug of cisplatin and aspirin, using preclinical mouse- and guinea pig-based models and demonstrated its efficacy with reduced ototoxicity. In addition, in vitro studies documented that when Platin- A is used in combination with a clinically relevant dose of radiation, its efficacy can further be improved by attacking cellular bioenergetic profiles, producing multiple modes of DNA damage, and delaying repair of damaged DNA. These studies demonstrated novel properties of the prodrug, Platin- A, highlighting its superior efficacy with reduced toxicity.
Assuntos
Cisplatino/farmacologia , Otopatias/prevenção & controle , Doenças do Sistema Nervoso/prevenção & controle , Neoplasias Ovarianas/tratamento farmacológico , Pró-Fármacos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Apoptose , Aspirina/farmacologia , Proliferação de Células , Feminino , Cobaias , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
A major objective of nanomedicine is to combine in a controlled manner multiple functional entities into a single nanoscale device to target particles with great spatial precision, thereby increasing the selectivity and potency of therapeutic drugs. A multifunctional nanoparticle is described for controlled conjugation of a cytotoxic drug, a cancer cell targeting ligand, and an imaging moiety. The approach is based on the chemical synthesis of polyethylene glycol that at one end is modified by a thioctic acid for controlled attachment to a gold core. The other end of the PEG polymers is modified by a hydrazine, amine, or dibenzocyclooctynol moiety for conjugation with functional entities having a ketone, activated ester, or azide moiety, respectively. The conjugation approach allowed the controlled attachment of doxorubicin through an acid-labile hydrazone linkage, an Alexa Fluor dye through an amide bond, and a glycan-based ligand for the cell surface receptor CD22 of B-cells using strain promoted azide-alkyne cycloaddition. The incorporation of the ligand for CD22 led to rapid entry of the nanoparticle by receptor-mediated endocytosis. Covalent attachment of doxorubicin via hydrazone linkage caused pH-responsive intracellular release of doxorubicin and significantly enhanced the cytotoxicity of nanoparticles. A remarkable 60-fold enhancement in cytotoxicity of CD22 (+) lymphoma cells was observed compared to non- targeted nanoparticles.
Assuntos
Antineoplásicos/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Ouro/química , Linfoma de Células B/química , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Ciclo-Octanos/química , Ciclo-Octanos/metabolismo , Doxorrubicina/farmacologia , Portadores de Fármacos , Endocitose , Humanos , Concentração de Íons de Hidrogênio , Linfoma de Células B/metabolismoRESUMO
Strain-promoted 1,3-dipolar cycloaddition of cyclooctynes with 1,3-dipoles such as azides, nitrones, and nitrile oxides, are of interest for the functionalization of polymers. In this study, we have explored the use of a 4-dibenzocyclooctynol (DIBO)-containing chain transfer agent in reversible addition-fragmentation chain transfer polymerizations. The controlled radical polymerization resulted in well-defined DIBO-terminating polymers that could be modified by 1,3-dipolar cycloadditions using nitrones, nitrile oxides, and azides having a hydrophilic moiety. The self-assembly properties of the resulting block copolymers have been examined. The versatility of the methodology was further demonstrated by the controlled preparation of gold nanoparticles coated with the DIBO-containing polymers to produce materials that can be further modified by strain-promoted cycloadditions.
Assuntos
Química Click/métodos , Reação de Cicloadição/métodos , Polímeros/química , Ciclização , PolimerizaçãoRESUMO
Targeted delivery and controlled release of inactive platinum (Pt) prodrugs may offer a new approach to improve the efficacy and tolerability of the Pt family of drugs, which are used to treat 50% of all cancers today. Using prostate cancer (PCa) as a model disease, we previously described the engineering of aptamer (Apt)-targeted poly(D,L-lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles (NPs) encapsulating a Pt(IV) prodrug c,t,c[Pt(NH(3))(2)-(O(2)CCH(2)CH(2)CH(2)CH(2)CH(3))(2)Cl(2)] (1) (Pt-PLGA-b-PEG-Apt-NP), which target the extracellular domain of the prostate specific membrane antigen (PSMA), for enhanced in vitro cytotoxicity. Here we demonstrate enhanced in vivo pharmacokinetics (PK), biodistribution, tolerability, and efficacy of Pt-PLGA-b-PEG-Apt-NP (150 ± 15 nm encapsulating â¼5% wt/wt Pt(IV) prodrug) when compared to cisplatin administered in its conventional form in normal Sprague Dawley rats, Swiss Albino mice, and the PSMA-expressing LNCaP subcutaneous xenograft mouse model of PCa, respectively. The 10-d maximum tolerated dose following a single i.v. injection of Pt-PLGA-b-PEG-NP in rats and mice was determined at 40 mg/kg and 5 mg/kg, respectively. PK studies with Pt-PLGA-b-PEG-NP revealed prolonged Pt persistence in systemic blood circulation and decreased accumulation of Pt in the kidneys, a major target site of cisplatin toxicity. Pt-PLGA-b-PEG-Apt-NPs further displayed the significant dose-sparing characteristics of the drug, with equivalent antitumor efficacy in LNCaP xenografts at 1/3 the dose of cisplatin administered in its conventional form (0.3 mg/kg vs. 1 mg/kg). When considering the simultaneous improvement in tolerability and efficacy, the Pt-PLGA-b-PEG-Apt NP provides a remarkable improvement in the drug therapeutic index.
Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Pró-Fármacos/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Cisplatino/farmacocinética , Cisplatino/uso terapêutico , Humanos , Masculino , Camundongos , Pró-Fármacos/farmacocinética , Pró-Fármacos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Background: Finding new strategies to treat cognitive disorders is a challenging task. Medication must defeat the blood-brain barrier. Cannabidiol (CBD), a non-intoxicating compound of the cannabis plant, has gained recognition as a nutraceutical for its potential effectiveness in treating anxiety, oxidative stress, convulsions, and inflammation. However, the dose, tolerable upper intake, formulation, administration routes, comorbidities, diet, and demographic factors to reverse cognitive impairments have not been completely explored. Trials using CBD as a primary intervention have been conducted to alleviate cognitive issues. This review evaluates the benefits of CBD supplementation, research design, formulations, and outcomes reported in randomized clinical trials. Methods: An evidence-based systematic literature review was conducted using PUBMED and the Florida International University Research Library resources. Fourteen randomized trials were selected for review, and their designs and outcomes were compared conceptually and in the form of resume tables. Results: CBD showed improvement in anxiety and cognitive impairments in 9 out of 16 analyzed trials. However, the variability could be justified due to the diversity of the trial designs, underpowered studies, assayed population, uncontrolled results for comorbidities, medications, severity of drug dependence, compliances, and adherences. Overall, oral single doses of 200 mg-1,500 mg or vaporized 13.75 mg of CBD were shown to be effective at treating anxiety and cognition with a good safety profile and no drug addiction behaviors. Conversely, results that did not have a significant effect on treating cognitive impairments can be explained by various factors such as THC or other abuse drugs masking effect, low dose, and unknown purity of CBD. Furthermore, CBD shows potential properties that can be tested in the future for Alzheimer's disease. Conclusion: As medical cannabis becomes more accessible, it is essential to understand whether medication rich in CBD exerts a beneficial effect on cognitive disorders. Our study concludes that CBD is a promising candidate for treating neurocognitive disorders; however, more studies are required to define CBD as a therapeutic candidate for managing cognitive disorders.
RESUMO
The recurrent nature of glioblastoma negatively impacts conventional treatment strategies leading to a growing need for nanomedicine. Nanotherapeutics, an approach designed to deliver drugs to specific sites, is experiencing rapid growth and gaining immense popularity. Having potential in reaching the hard-to-reach disease sites, this field has the potential to show high efficacy in combatting glioblastoma progression. The presence of glioblastoma stem cells (GSCs) is a major factor behind the poor prognosis of glioblastoma multiforme (GBM). Stemness potential, heterogeneity, and self-renewal capacity, are some of the properties that make GSCs invade across the distant regions of the brain. Despite advances in medical technology and MRI-guided maximal surgical resection, not all GSCs residing in the brain can be removed, leading to recurrent disease. The aggressiveness of GBM is often correlated with immune suppression, where the T-cells are unable to infiltrate the cancer initiating GSCs. Standard of care therapies, including surgery and chemotherapy in combination with radiation therapy, have failed to tackle all the challenges of the GSCs, making it increasingly important for researchers to develop strategies to tackle their growth and proliferation and reduce the recurrence of GBM. Here, we will focus on the advancements in the field of nanomedicine that has the potential to show positive impact in managing glioblastoma tumor microenvironment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanomedicina , Células-Tronco Neoplásicas , Glioblastoma/terapia , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Animais , Recidiva Local de Neoplasia , Terapia de Imunossupressão , Invasividade Neoplásica , CamundongosRESUMO
Nanotechnology has shown great promise for researchers to develop efficient nanocarriers for better therapy, imaging, and sustained release of drugs. The existing treatments are accompanied by serious toxicity limitations, leading to severe side effects, multiple drug resistance, and off-target activity. In this regard, nanogels have garnered significant attention for their multi-functional role combining advanced therapeutics with imaging in a single platform. Nanogels can be functionalized to target specific tissues which can improve the efficiency of drug delivery and other challenges associated with the existing nanocarriers. Translation of nanogel technology requires more exploration towards stability and enhanced efficiency. In this review, we present the advances and challenges related to nanogels for cancer therapy, ophthalmology, neurological disorders, tuberculosis, wound healing, and anti-viral applications. A perspective on recent research trends of nanogels for translation to clinics is also discussed.
RESUMO
The genomic revolution has identified therapeutic targets for a plethora of diseases, creating a need to develop robust technologies for combination drug therapy. In the present work, we describe a self-assembled polymeric nanoparticle (NP) platform to target and control precisely the codelivery of drugs with varying physicochemical properties to cancer cells. As proof of concept, we codelivered cisplatin and docetaxel (Dtxl) to prostate cancer cells with synergistic cytotoxicity. A polylactide (PLA) derivative with pendant hydroxyl groups was prepared and conjugated to a platinum(IV) [Pt(IV)] prodrug, c,t,c-[Pt(NH(3))(2)(O(2)CCH(2)CH(2)COOH)(OH)Cl(2)] [PLA-Pt(IV)]. A blend of PLA-Pt(IV) functionalized polymer and carboxyl-terminated poly(D,L-lactic-co-glycolic acid)-block-poly(ethylene glycol) copolymer in the presence or absence of Dtxl, was converted, in microfluidic channels, to NPs with a diameter of â¼100 nm. This process resulted in excellent encapsulation efficiency (EE) and high loading of both hydrophilic platinum prodrug and hydrophobic Dtxl with reproducible EEs and loadings. The surface of the NPs was derivatized with the A10 aptamer, which binds to the prostate-specific membrane antigen (PSMA) on prostate cancer cells. These NPs undergo controlled release of both drugs over a period of 48-72 h. Targeted NPs were internalized by the PSMA-expressing LNCaP cells via endocytosis, and formation of cisplatin 1,2-d(GpG) intrastrand cross-links on nuclear DNA was verified. In vitro toxicities demonstrated superiority of the targeted dual-drug combination NPs over NPs with single drug or nontargeted NPs. This work reveals the potential of a single, programmable nanoparticle to blend and deliver a combination of drugs for cancer treatment.
Assuntos
Quimioterapia Combinada , Nanopartículas , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Cisplatino/administração & dosagem , Cisplatino/uso terapêutico , Docetaxel , Eletroquímica , Endocitose , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Taxoides/administração & dosagem , Taxoides/uso terapêuticoRESUMO
Magnetic nanoparticles possess unique properties distinct from other types of nanoparticles developed for biomedical applications. Their unique magnetic properties and multifunctionalities are especially beneficial for central nervous system (CNS) disease therapy and diagnostics, as well as targeted and personalized applications using image-guided therapy and theranostics. This review discusses the recent development of magnetic nanoparticles for CNS applications, including Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, and drug addiction. Machine learning (ML) methods are increasingly applied towards the processing, optimization and development of nanomaterials. By using data-driven approach, ML has the potential to bridge the gap between basic research and clinical research. We review ML approaches used within the various stages of nanomedicine development, from nanoparticle synthesis and characterization to performance prediction and disease diagnosis.
RESUMO
Human immunodeficiency virus (HIV) infection is associated with a chronic inflammatory stage and continuous activation of inflammasome pathway. We studied the anti-inflammatory effects of the compound cannabidiol (CBD) in comparison with Δ (9)-tetrahydrocannabinol [Δ(9)-THC] in human microglial cells (HC69.5) infected with HIV. Our results showed that CBD reduced the production of various inflammatory cytokines and chemokines such as MIF, SERPIN E1, IL-6, IL-8, GM-CSF, MCP-1, CXCL1, CXCL10, and IL-1 ß compared to Δ(9)-THC treatment. In addition, CBD led to the deactivation of caspase 1, reduced NLRP3 gene expression which play a crucial role in the inflammasome cascade. Furthermore, CBD significantly reduced the expression of HIV. Our study demonstrated that CBD has anti-inflammatory properties and exhibits significant therapeutic potential against HIV-1 infections and neuroinflammation.
Assuntos
Canabidiol , HIV-1 , Humanos , Canabidiol/farmacologia , Dronabinol/farmacologia , Microglia/metabolismo , Inflamassomos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismoRESUMO
Brain cancers and neurodegenerative diseases are on the rise, treatments for central nervous system (CNS) diseases remain limited. Despite the significant advancement in drug development technology with emerging biopharmaceuticals like gene therapy or recombinant protein, the clinical translational rate of such biopharmaceuticals to treat CNS disease is extremely poor. The blood-brain barrier (BBB), which separates the brain from blood and protects the CNS microenvironment to maintain essential neuronal functions, poses the greatest challenge for CNS drug delivery. Many strategies have been developed over the years which include local disruption of BBB via physical and chemical methods, and drug transport across BBB via transcytosis by targeting some endogenous proteins expressed on brain-capillary. Drug delivery to brain is an ever-evolving topic, although there were multiple review articles in literature, an update is warranted due to continued growth and new innovations of research on this topic. Thus, this review is an attempt to highlight the recent strategies employed to overcome challenges of CNS drug delivery while emphasizing the necessity of investing more efforts in CNS drug delivery technologies parallel to drug development.
RESUMO
Neurological disorders remain a significant health and economic burden worldwide. Addressing the challenges imposed by existing drugs, associated side- effects, and immune responses in neurodegenerative diseases is essential for developing better therapies. The immune activation in a diseased state has complex treatment protocols and results in hurdles for clinical translation. There is an immense need for the development of multifunctional nanotherapeutics with various properties to address the different limitations and immune interactions exhibited by the existing therapeutics. Nanotechnology has proven its potential to improve therapeutic delivery and enhance efficacy. Promising advancements have been made in developing nanotherapies that can be combined with CRISPR/Cas9 or siRNA for a targeted approach with unique potential for clinical translation. Engineering natural exosomes derived from mesenchymal stem cells (MSCs), dendritic cells (DCs), or macrophages to both deliver therapeutics and modulate the immune responses to tumors or in neurodegenerative disease (ND) can allow for targeted personalized therapeutic approaches. In the present review, we summarize and overview the recent advances in nanotherapeutics in addressing the existing treatment limitations and neuroimmune interactions for developing ND therapies and provide insights into the upcoming advancements in nanotechnology-based nanocarriers.
Assuntos
Sistemas de Liberação de Medicamentos , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Nanotecnologia/métodos , Preparações FarmacêuticasRESUMO
Since its discovery in 1965, the inorganic drug cisplatin has become a mainstay of cancer therapies and has inspired many platinum (Pt)-based compounds to solve various issues of toxicity and limitations associated with the original cisplatin. However, many of these drugs/prodrugs continue to be plagued by an array of side effects, limited circulation, and half-life and off-target effects. To solve this issue, we have constructed an array of platinum-based prodrugs on a Pt(IV) skeleton, which provides more favorable geometry and hydrophobicity, easier functionalization, and ultimately better targeting abilities. Each of these Pt(IV) prodrugs aims to either combine cisplatin with other agents for a combination therapeutic effect or improve the targeting of cisplatin itself, all for the more effective treatment of specific cancers. Our developed prodrugs include Platin-A, which combines cisplatin with the anti-inflammatory agent aspirin, Platin-M, which is functionalized with a mitochondria-targeting moiety, and Platin-B and Platin-Cbl, which combine cisplatin with components to combat cellular resistance to chemotherapy. At the same time, however, we recognize the crucial role of nanotechnology in improving the efficacy of cisplatin prodrugs and other inorganic compounds for the treatment of cancers. We describe several key benefits provided by nanomedicine that vastly improve the reach and utility of cisplatin prodrugs, including the ability of biodegradable polymeric nanoparticles (NPs) to deliver these agents with precision to the mitochondria, transport drugs across the blood-brain barrier, and target cisplatin prodrugs to specific cancers using various ligands. In addition, we highlight our progress in the engineering of innovative new polymers to improve the release patterns, pharmacokinetics, and dosages of cancer therapies. In this Account, we aim to describe the growing need for collaboration between the fields of inorganic chemistry and nanotechnology and how new advancements can not only improve on traditional chemotherapeutic agents but also expand their reach to entirely new subsets of cancers. In addition to detailing the design and principles behind our modifications of cisplatin and the efficacy of these new prodrugs against aggressive, cisplatin-resistant, or metastatic cancers, we also shed light on nanotechnology's essential role in protecting inorganic drugs and the human body from one another for more effective disease treatment without the off-target effects with which it is normally associated. We hope that this perspective into the important intersection between inorganic medicinal chemistry and nanotechnology will inspire future research on cisplatin prodrugs and other inorganic agents, innovative polymer and NP design, and the ways in which these two fields can greatly advance cancer treatment.
RESUMO
Despite the significant advances in neurology, the cure for neurodegenerative conditions remains a formidable task to date. Among various factors arising from the complex etiology of neurodegenerative diseases, neuroinflammation and oxidative stress play a major role in pathogenesis. To this end, some phytocannabinoids isolated from Cannabis sativa (widely known as marijuana) have attracted significant attention as potential neurotherapeutics. The profound effect of ∆9-tetrahydrocannabinol (THC), the major psychoactive component of cannabis, has led to the discovery of the endocannabinoid system as a molecular target in the central nervous system (CNS). Cannabidiol (CBD), the major non-psychoactive component of cannabis, has recently emerged as a potential prototype for neuroprotective drug development due to its antioxidant and anti-inflammatory properties and its well-tolerated pharmacological behavior. This review briefly discusses the role of inflammation and oxidative stress in neurodegeneration and demonstrates the neuroprotective effect of cannabidiol, highlighting its general mechanism of action and disease-specific pathways in Parkinson's disease (PD) and Alzheimer's disease (AD). Furthermore, we have summarized the preclinical and clinical findings on the therapeutic promise of CBD in PD and AD, shed light on the importance of determining its therapeutic window, and provide insights into identifying promising new research directions.
RESUMO
In order to combat an evolving, multidimensional disease such as cancer, research has been aimed at synthesizing more efficient and effective versions of popular chemotherapeutic drugs. Despite these efforts, there remains a necessity for the development of suitable delivery vehicles that can both harness the chemotherapeutic effects meanwhile reducing some of the known issues when using these drugs such as unwanted side-effects, acquired drug resistance, and associated difficulties with drug delivery. Synthetic drug discovery approaches focusing on modification of the native structure of these chemotherapeutic drugs often face challenges such as loss of efficacy, as well as a potential worsening of side-effects. Synthetic chemists are then left with increasingly narrow choices for possible chemistry they could implement to achieve the desired therapy. The emergence of targeted therapies using controlled-release nanomaterials can provide many opportunities for conventional chemotherapeutic drugs to be delivered to specific target sites, ultimately leading to reduced side-effects and improved efficacy. Logically, it may prove advantageous to consider nano-delivery systems as a likely candidate for circumventing some of the barriers associated with creating viable drug therapies. In this review, we summarize controlled release nanoformulations of the three most widely used and approved chemotherapeutics, doxorubicin, paclitaxel, and cisplatin as an alternative therapeutic approach against different cancer types.
Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapêutico , Preparações de Ação Retardada/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Humanos , Neoplasias/tratamento farmacológicoRESUMO
Magneto-electric (ME) materials with core-shell architecture where the core is made of magnetic materials have emerged as an attractive nanomaterial due to the coupling of magnetic and electric properties in the same material and the fact that both fields can be controlled which allows an on-demand, transport and release of loaded cargo. Over the last decade, biomedical engineers and researchers from various interdisciplinary fields have successfully demonstrated promising properties ranging from therapeutic delivery to sensing, and neuromodulation using ME materials. In this review, we systematically summarize developments in various biomedical fields using the nanoforms of these materials. Herein, we also highlight various promising biomedical applications where the ME nanocarriers are encapsulated in other materials such as gels and liposomes and their potential for promising therapeutics and diagnostic applications.