Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982825

RESUMO

Uterine leiomyomas (ULs), frequent benign tumours of the female reproductive tract, are associated with a range of symptoms and significant morbidity. Despite extensive research, there is no consensus on essential points of UL initiation and development. The main reason for this is a pronounced inter- and intratumoral heterogeneity resulting from diverse and complicated mechanisms underlying UL pathobiology. In this review, we comprehensively analyse risk and protective factors for UL development, UL cellular composition, hormonal and paracrine signalling, epigenetic regulation and genetic abnormalities. We conclude the need to carefully update the concept of UL genesis in light of the current data. Staying within the framework of the existing hypotheses, we introduce a possible timeline for UL development and the associated key events-from potential prerequisites to the beginning of UL formation and the onset of driver and passenger changes.


Assuntos
Leiomioma , Neoplasias Uterinas , Feminino , Humanos , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Epigênese Genética , Mutação , Leiomioma/genética , Leiomioma/patologia
2.
Cytogenet Genome Res ; 161(1-2): 43-51, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33550288

RESUMO

In the present study, we aimed to check whether uterine leiomyomas (ULs) with an apparently normal karyotype in vitro comprise "hidden" cell subpopulations with numerical chromosome abnormalities (heteroploid cells). A total of 32 ULs obtained from 32 patients were analyzed in the study. Each UL was sampled for in vivo and in vitro cytogenetic studies. Karyotyping was performed on metaphase preparations from the cultured UL samples. A normal karyotype was revealed in 20 out of the 32 ULs, of which 9 were selected for further study based on the good quality of the interphase preparations. Then, using interphase FISH with centromeric DNA probes, we analyzed the copy number of chromosomes 7 and 16 in 1,000 uncultured and 1,000 cultured cells of each selected UL. All of the ULs included both disomic cells representing a predominant subpopulation and heteroploid cells reaching a maximum frequency of 21.6% (mean 9.8%) in vivo and 11.5% (mean 6.1%) in vitro. The spectrum of heteroploid cells was similar in vivo and in vitro and mostly consisted of monosomic and tetrasomic cells. However, their frequencies in the cultured samples differed from those in the uncultured ones: while the monosomic cells decreased in number, the tetrasomic cells became more numerous. The frequency of either monosomic or tetrasomic cells both in vivo and in vitro was not associated with the presence of MED12 exon 2 mutations in the tumors. Our results suggest that ULs with an apparently normal karyotype consist of both karyotypically normal and heteroploid cells, implying that the occurrence of minor cell subpopulations with numerical chromosome abnormalities may be considered a characteristic of UL tumorigenesis. Different frequencies of heteroploid cells in vivo and in vitro suggest their dependence on microenvironmental conditions, thus providing a pathway for regulation of their propagation, which may be important for the UL pathogenesis.


Assuntos
Cariotipagem , Leiomioma/genética , Neoplasias Uterinas/genética , Carcinogênese , Aberrações Cromossômicas , Citogenética , Análise Mutacional de DNA , Sondas de DNA , Éxons , Feminino , Humanos , Hibridização in Situ Fluorescente , Técnicas In Vitro , Mutação , Miomectomia Uterina
3.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070406

RESUMO

The human lifespan is strongly influenced by telomere length (TL) which is defined in a zygote-when two highly specialised haploid cells form a new diploid organism. Although TL is a variable parameter, it fluctuates in a limited range. We aimed to establish the determining factors of TL in chromosomes of maternal and paternal origin in human triploid zygotes. Using Q-FISH, we examined TL in the metaphase chromosomes of 28 human triploid zygotes obtained from 22 couples. The chromosomes' parental origin was identified immunocytochemically through weak DNA methylation and strong hydroxymethylation in the sperm-derived (paternal) chromosomes versus strong DNA methylation and weak hydroxymethylation in the oocyte-derived (maternal) ones. In 24 zygotes, one maternal and two paternal chromosome sets were identified, while the four remaining zygotes contained one paternal and two maternal sets. For each zygote, we compared mean relative TLs between parental chromosomes, identifying a significant difference in favour of the paternal chromosomes, which attests to a certain "imprinting" of these regions. Mean relative TLs in paternal or maternal chromosomes did not correlate with the respective parent's age. Similarly, no correlation was observed between the mean relative TL and sperm quality parameters: concentration, progressive motility and normal morphology. Based on the comparison of TLs in chromosomes inherited from a single individual's gametes with those in chromosomes inherited from different individuals' gametes, we compared intraindividual (intercellular) and interindividual variability, obtaining significance in favour of the latter and thus validating the role of heredity in determining TL in zygotes. A comparison of the interchromatid TL differences across the chromosomes from sets of different parental origin with those from PHA-stimulated lymphocytes showed an absence of a significant difference between the maternal and paternal sets but a significant excess over the lymphocytes. Therefore, interchromatid TL differences are more pronounced in zygotes than in lymphocytes. To summarise, TL in human zygotes is determined both by heredity and parental origin; the input of other factors is possible within the individual's reaction norm.


Assuntos
Cromossomos Humanos/metabolismo , Metáfase , Homeostase do Telômero , Telômero/metabolismo , Triploidia , Zigoto/metabolismo , Fertilização in vitro , Humanos , Telômero/patologia , Zigoto/patologia
4.
Int J Mol Sci ; 21(9)2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370155

RESUMO

Convincing evidence accumulated over the last decades demonstrates the crucial role of epigenetic modifications for mammalian genome regulation and its flexibility. DNA methylation and demethylation is a key mechanism of genome programming and reprogramming. During ontogenesis, the DNA methylome undergoes both programmed changes and those induced by environmental and endogenous factors. The former enable accurate activation of developmental programs; the latter drive epigenetic responses to factors that directly or indirectly affect epigenetic biochemistry leading to alterations in genome regulation and mediating organism response to environmental transformations. Adverse environmental exposure can induce aberrant DNA methylation changes conducive to genetic dysfunction and, eventually, various pathologies. In recent years, evidence was derived that apart from 5-methylcytosine, the DNA methylation/demethylation cycle includes three other oxidative derivatives of cytosine-5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine. 5hmC is a predominantly stable form and serves as both an intermediate product of active DNA demethylation and an essential hallmark of epigenetic gene regulation. This makes 5hmC a potential contributor to epigenetically mediated responses to environmental factors. In this state-of-the-art review, we consolidate the latest findings on environmentally induced adverse effects on 5hmC patterns in mammalian genomes. Types of environmental exposure under consideration include hypnotic drugs and medicines (i.e., phenobarbital, diethylstilbestrol, cocaine, methamphetamine, ethanol, dimethyl sulfoxide), as well as anthropogenic pollutants (i.e., heavy metals, particulate air pollution, bisphenol A, hydroquinone, and pentachlorophenol metabolites). We put a special focus on the discussion of molecular mechanisms underlying environmentally induced alterations in DNA hydroxymethylation patterns and their impact on genetic dysfunction. We conclude that DNA hydroxymethylation is a sensitive biosensor for many harmful environmental factors each of which specifically targets 5hmC in different organs, cell types, and DNA sequences and induces its changes through a specific metabolic pathway. The associated transcriptional changes suggest that environmentally induced 5hmC alterations play a role in epigenetically mediated genome flexibility. We believe that knowledge accumulated in this review together with further studies will provide a solid basis for new approaches to epigenetic therapy and chemoprevention of environmentally induced epigenetic toxicity involving 5hmC patterns.


Assuntos
5-Metilcitosina/análogos & derivados , Metilação de DNA , Epigênese Genética/genética , Epigenômica/métodos , Genoma/genética , 5-Metilcitosina/metabolismo , Animais , Compostos Benzidrílicos/intoxicação , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Fenóis/intoxicação
6.
Genes (Basel) ; 14(4)2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37107671

RESUMO

We report on the case of prenatal detection of trisomy 2 in placental biopsy and further algorithm of genetic counseling and testing. A 29-year-old woman with first-trimester biochemical markers refused chorionic villus sampling and preferred targeted non-invasive prenatal testing (NIPT), which showed low risk for aneuploidies 13, 18, 21, and X. A series of ultrasound examinations revealed increased chorion thickness at 13/14 weeks of gestation and fetal growth retardation, a hyperechoic bowel, challenging visualization of the kidneys, dolichocephaly, ventriculomegaly, increase in placental thickness, and pronounced oligohydramnios at 16/17 weeks of gestation. The patient was referred to our center for an invasive prenatal diagnosis. The patient's blood and placenta were sampled for whole-genome sequencing-based NIPT and array comparative genomic hybridization (aCGH), respectively. Both investigations revealed trisomy 2. Further prenatal genetic testing in order to confirm trisomy 2 in amniocytes and/or fetal blood was highly questionable because oligohydramnios and fetal growth retardation made amniocentesis and cordocentesis technically unfeasible. The patient opted to terminate the pregnancy. Pathological examination of the fetus revealed internal hydrocephalus, atrophy of brain structure, and craniofacial dysmorphism. Conventional cytogenetic analysis and fluorescence in situ hybridization revealed chromosome 2 mosaicism with a prevalence of trisomic clone in the placenta (83.2% vs. 16.8%) and a low frequency of trisomy 2, which did not exceed 0.6% in fetal tissues, advocating for low-level true fetal mosaicism. To conclude, in pregnancies at risk of fetal chromosomal abnormalities that refuse invasive prenatal diagnosis, whole-genome sequencing-based NIPT, but not targeted NIPT, should be considered. In prenatal cases of trisomy 2, true mosaicism should be distinguished from placental-confined mosaicism using cytogenetic analysis of amniotic fluid cells or fetal blood cells. However, if material sampling is impossible due to oligohydramnios and/or fetal growth retardation, further decisions should be based on a series of high-resolution fetal ultrasound examinations. Genetic counseling for the risk of uniparental disomy in a fetus is also required.


Assuntos
Oligo-Hidrâmnio , Trissomia , Gravidez , Feminino , Humanos , Adulto , Trissomia/diagnóstico , Trissomia/genética , Placenta , Aconselhamento Genético , Oligo-Hidrâmnio/diagnóstico , Hibridização in Situ Fluorescente , Hibridização Genômica Comparativa , Retardo do Crescimento Fetal/genética , Cromossomos Humanos Par 2
7.
Biomedicines ; 9(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34944592

RESUMO

We performed a comparative cytogenomic analysis of cultured and uncultured uterine leiomyoma (UL) samples. The experimental approach included karyotyping, aCGH, verification of the detected chromosomal abnormalities by metaphase and interphase FISH, MED12 mutation analysis and telomere measurement by Q-FISH. An abnormal karyotype was detected in 12 out of 32 cultured UL samples. In five karyotypically abnormal ULs, MED12 mutations were found. The chromosomal abnormalities in ULs were present mostly by complex rearrangements, including chromothripsis. In both karyotypically normal and abnormal ULs, telomeres were ~40% shorter than in the corresponding myometrium, being possibly prerequisite to chromosomal rearrangements. The uncultured samples of six karyotypically abnormal ULs were checked for the detected chromosomal abnormalities through interphase FISH with individually designed DNA probe sets. All chromosomal abnormalities detected in cultured ULs were found in corresponding uncultured samples. In all tumors, clonal spectra were present by the karyotypically abnormal cell clone/clones which coexisted with karyotypically normal ones, suggesting that chromosomal abnormalities acted as drivers, rather than triggers, of the neoplastic process. In vitro propagation did not cause any changes in the spectrum of the cell clones, but altered their ratio compared to uncultured sample. The alterations were unique for every UL. Compared to its uncultured counterpart, the frequency of chromosomally abnormal cells in the cultured sample was higher in some ULs and lower in others. To summarize, ULs are characterized by both inter- and intratumor genetic heterogeneity. Regardless of its MED12 status, a tumor may be comprised of clones with and without chromosomal abnormalities. In contrast to the clonal spectrum, which is unique and constant for each UL, the clonal frequency demonstrates up or down shifts under in vitro conditions, most probably determined by the unequal ability of cells with different genetic aberrations to exist outside the body.

8.
Front Genet ; 10: 393, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114609

RESUMO

In the present review, we focus on the phenomenon of chromothripsis, a new type of complex chromosomal rearrangements. We discuss the challenges of chromothripsis detection and its distinction from other chromoanagenesis events. Along with already known causes and mechanisms, we introduce aberrant epigenetic regulation as a possible pathway to chromothripsis. We address the issue of chromothripsis characteristics in cancers and benign tumours, as well as chromothripsis inheritance in cases of its occurrence in germ cells, zygotes and early embryos. Summarising the presented data on different phenotypic effect of chromothripsis, we assume that its consequences are most likely determined not by the chromosome shattering and reassembly themselves, but by the genome regions involved in the rearrangement.

9.
Front Genet ; 10: 1164, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824569

RESUMO

We report on the phenotype and the reproductive history of an adult female patient with an unbalanced karyotype: 8p23 and 18p11.3 terminal deletions and 8p22 duplication. The indication for karyotyping of the 28-year-old patient was a structural rearrangement in her miscarriage specimen: 45,ХХ,der(8;18)t(8;18)(p23;p11.3). Unexpectedly, the patient had the same karyotype with only one normal chromosome 8, one normal chromosome 18, and a derivative chromosome, which was a product of chromosomes 8 and 18 fusion with loss of their short arm terminal regions. Fluorescence in situ hybridization revealed that derivative chromosome was a pseudodicentric with an active centromere of chromosome 8. Array comparative genomic hybridization confirmed 8p and 18p terminal deletions and additionally revealed 8p22 duplication with a total of 43 OMIM annotated genes being affected by the rearrangement. The patient had minor facial and cranial dysmorphia and no pronounced physical or mental abnormalities. She was socially normal, had higher education and had been married since the age of 26 years. Considering genetic counseling, the patient had decided to conceive the next pregnancy through in vitro fertilization (IVF) with preimplantation genetic testing for structural chromosomal aberrations (PGT-SR). She underwent four IVF/PGT-SR cycles with a total of 25 oocytes obtained and a total of 10 embryos analyzed. Only one embryo was balanced regarding chromosomes 8 and 18, while the others were unbalanced and demonstrated different combinations of the normal chromosomes 8 and 18 and the derivative chromosome. The balanced embryo was transferred, but the pregnancy was not registered. After four unsuccessful IVF/PGT-SR cycles, the patient conceived naturally. Non-invasive prenatal testing showed additional chromosome 18. The prenatal cytogenetic analysis of chorionic villi revealed an abnormal karyotype: 46,ХХ,der(8;18)t(8;18)(p23;p11.3)mat,+18. The pregnancy was terminated for medical reasons. The patient has a strong intention to conceive a karyotypically normal fetus. However, genetic counseling regarding this issue is highly challenging. Taking into account a very low chance of balanced gametes, emotional stress caused by numerous unsuccessful attempts to conceive a balanced embryo and increasing age of the patient, an IVF cycle with a donor oocyte should probably be considered.

10.
Mol Med Rep ; 14(1): 22-32, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27176897

RESUMO

Pre-eclampsia (PE) is a complication of pregnancy that affects 5­8% of women after 20 weeks of gestation. It is usually diagnosed based on the de novo onset of hypertension and proteinuria. Preexisting hypertension in women developing PE, also known as superimposed PE on chronic hypertension (SPE), leads to elevated risk of maternal and fetal mortality. PE is associated with an altered microRNA (miRNA) expression pattern in the placenta, suggesting that miRNA deregulation is involved in the pathogenesis of PE. Whether and how the miRNA expression pattern is changed in the SPE placenta remains unclear. The present study analyzed the placental miRNA expression profile in pregnancies complicated by SPE. miRNA expression profiles in SPE and normal placentas were investigated using an Ion Torrent sequencing system. Sequencing data were processed using a comprehensive analysis pipeline for deep miRNA sequencing (CAP­miRSeq). A total of 22 miRNAs were identified to be deregulated in placentas from patients with SPE. They included 16 miRNAs previously known to be associated with PE and 6 novel miRNAs. Among the 6 novel miRNAs, 4 were upregulated (miR­518a, miR­527, miR­518e and miR­4532) and 2 downregulated (miR­98 and miR­135b) in SPE placentas compared with controls. The present results suggest that SPE is associated with specific alterations in the placental miRNA expression pattern, which differ from alterations detected in PE placentas, and therefore, provide novel targets for further investigation of the molecular mechanisms underlying SPE pathogenesis.


Assuntos
Hipertensão/complicações , MicroRNAs/genética , Placenta/metabolismo , Pré-Eclâmpsia/etiologia , Pré-Eclâmpsia/fisiopatologia , Adulto , Pressão Sanguínea , Estudos de Casos e Controles , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pré-Eclâmpsia/diagnóstico , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA