Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cell ; 162(3): 527-39, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26232223

RESUMO

About 12,000 years ago in the Near East, humans began the transition from hunter-gathering to agriculture-based societies. Barley was a founder crop in this process, and the most important steps in its domestication were mutations in two adjacent, dominant, and complementary genes, through which grains were retained on the inflorescence at maturity, enabling effective harvesting. Independent recessive mutations in each of these genes caused cell wall thickening in a highly specific grain "disarticulation zone," converting the brittle floral axis (the rachis) of the wild-type into a tough, non-brittle form that promoted grain retention. By tracing the evolutionary history of allelic variation in both genes, we conclude that spatially and temporally independent selections of germplasm with a non-brittle rachis were made during the domestication of barley by farmers in the southern and northern regions of the Levant, actions that made a major contribution to the emergence of early agrarian societies.


Assuntos
Evolução Biológica , Hordeum/fisiologia , Dispersão de Sementes , Sequência de Aminoácidos , Hordeum/anatomia & histologia , Hordeum/genética , Dados de Sequência Molecular , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alinhamento de Sequência
2.
Proc Natl Acad Sci U S A ; 120(11): e2214968120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897977

RESUMO

Wheat yellow mosaic virus (WYMV) is a pathogen transmitted into its host's roots by the soil-borne vector Polymyxa graminis. Ym1 and Ym2 genes protect the host from the significant yield losses caused by the virus, but the mechanistic basis of these resistance genes remains poorly understood. Here, it has been shown that Ym1 and Ym2 act within the root either by hindering the initial movement of WYMV from the vector into the root and/or by suppressing viral multiplication. A mechanical inoculation experiment on the leaf revealed that the presence of Ym1 reduced viral infection incidence, rather than viral titer, while that of Ym2 was ineffective in the leaf. To understand the basis of the root specificity of the Ym2 product, the gene was isolated from bread wheat using a positional cloning approach. The candidate gene encodes a CC-NBS-LRR protein and it correlated allelic variation with respect to its sequence with the host's disease response. Ym2 (B37500) and its paralog (B35800) are found in the near-relatives, respectively, Aegilops sharonensis and Aegilops speltoides (a close relative of the donor of bread wheat's B genome), while both sequences, in a concatenated state, are present in several accessions of the latter species. Structural diversity in Ym2 has been generated via translocation and recombination between the two genes and enhanced by the formation of a chimeric gene resulting from an intralocus recombination event. The analysis has revealed how the Ym2 region has evolved during the polyploidization events leading to the creation of cultivated wheat.


Assuntos
Aegilops , Triticum , Aegilops/genética , Aegilops/metabolismo , Triticum/genética , Triticum/metabolismo , Triticum/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/virologia , Clonagem Molecular , Transcrição Gênica , Filogenia , Doenças das Plantas
3.
Plant J ; 116(3): 887-902, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37548103

RESUMO

Floral morphology varies considerably between dicots and monocots. The ABCDE model explaining how floral organ development is controlled was formulated using core eudicots and applied to grass crops. Barley (Hordeum. vulgare) has unique floral morphogenesis. Wild barley (H. vulgare ssp. spontaneum), which is the immediate ancestor of cultivated barley (H. vulgare ssp. vulgare), contains a rich reservoir of genetic diversity. However, the wild barley genes involved in floral organ development are still relatively uncharacterized. In this study, we generated an organ-specific transcriptome atlas for wild barley floral organs. Genome-wide transcription profiles indicated that 22 838 protein-coding genes were expressed in at least one organ. These genes were grouped into seven clusters according to the similarities in their expression patterns. Moreover, 5619 genes exhibited organ-enriched expression, 677 of which were members of 47 transcription factor families. Gene ontology analyses suggested that the functions of the genes with organ-enriched expression influence the biological processes in floral organs. The co-expression regulatory network showed that the expression of 690 genes targeted by MADS-box proteins was highly positively correlated with the expression of ABCDE model genes during floral morphogenesis. Furthermore, the expression of 138 genes was specific to the wild barley OUH602 genome and not the Morex genome; most of these genes were highly expressed in the glume, awn, lemma, and palea. This study revealed the global gene expression patterns underlying floral morphogenesis in wild barley. On the basis of the study findings, a molecular mechanism controlling floral morphology in barley was proposed.


Assuntos
Hordeum , Hordeum/genética , Poaceae/genética , Fatores de Transcrição/genética , Transcriptoma/genética , Morfogênese/genética , Regulação da Expressão Gênica de Plantas/genética
4.
J Exp Bot ; 75(10): 2900-2916, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38366171

RESUMO

The HD-ZIP class I transcription factor Homeobox 1 (HvHOX1), also known as Vulgare Row-type Spike 1 (VRS1) or Six-rowed Spike 1, regulates lateral spikelet fertility in barley (Hordeum vulgare L.). It was shown that HvHOX1 has a high expression only in lateral spikelets, while its paralog HvHOX2 was found to be expressed in different plant organs. Yet, the mechanistic functions of HvHOX1 and HvHOX2 during spikelet development are still fragmentary. Here, we show that compared with HvHOX1, HvHOX2 is more highly conserved across different barley genotypes and Hordeum species, hinting at a possibly vital but still unclarified biological role. Using bimolecular fluorescence complementation, DNA-binding, and transactivation assays, we validate that HvHOX1 and HvHOX2 are bona fide transcriptional activators that may potentially heterodimerize. Accordingly, both genes exhibit similar spatiotemporal expression patterns during spike development and growth, albeit their mRNA levels differ quantitatively. We show that HvHOX1 delays the lateral spikelet meristem differentiation and affects fertility by aborting the reproductive organs. Interestingly, the ancestral relationship of the two genes inferred from their co-expressed gene networks suggested that HvHOX1 and HvHOX2 might play a similar role during barley spikelet development. However, CRISPR-derived mutants of HvHOX1 and HvHOX2 demonstrated the suppressive role of HvHOX1 on lateral spikelets, while the loss of HvHOX2 does not influence spikelet development. Collectively, our study shows that through the suppression of reproductive organs, lateral spikelet fertility is regulated by HvHOX1, whereas HvHOX2 is dispensable for spikelet development in barley.


Assuntos
Hordeum , Proteínas de Plantas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
5.
Mol Breed ; 44(3): 19, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38404719

RESUMO

Cleistogamy or closed flowering is a widely used trait in barley (Hordeum vulgare) breeding because it reduces the risk of fungal infection in florets at anthesis. Cleistogamy in barley is caused by a point mutation within the microRNA172 (miR172) target site of the Cly1 gene, which encodes the Apetala2 (AP2) transcription factor. Because cleistogamy is not apparent in cultivars of hexaploid wheat (Triticum aestivum), a strategy to develop cleistogamous wheat was proposed by inducing point mutations in all three AP2 homoeologs, which are the wheat orthologs of barley Cly1. In this study, we investigated the effects of miR172 target site mutations on wheat cleistogamy using double mutants by combining three previously obtained mutant alleles (AP2-A1, D1 and D2) in a near-isogenic background. The AP2-D2 allele had the greatest effect on reducing the anther extrusion rate and lodicule size compared with the other two mutant alleles. The double mutant containing the AP2-A1 and AP2-D2 alleles had a much greater suppression of anther extrusion by reducing the lodicule size than the single AP2-D2 mutant, suggesting cumulative effects of the two mutant alleles. In addition, both single and double mutants exhibited compact spikes and shorter plant heights due to reduced rachis and culm internodes in the upper parts. The presence or absence of the wild-type AP2-B homoeolog had no significant effect on phenotype. This study provides insights into the cumulative effects of mutant AP2 alleles in suppressing open flowering and provides a basis for further research on the development of complete cleistogamy in hexaploid wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01458-9.

6.
Plant Dis ; 108(6): 1719-1728, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38173257

RESUMO

The infection of young winter barley (Hordeum vulgare L.) root system in winter by barley yellow mosaic virus (BaYMV) can lead to high yield losses. Resistance breeding is critical for managing this virus, but there are only a few reports on resistance genes that describe how the genes control BaYMV propagation and the systemic movement from the roots to the leaves. Here we report a real-time quantitative PCR analysis of the virus in barley roots and leaves carrying BaYMV resistance genes (rym1 to rym15 and an unknown gene) to elucidate the molecular mechanisms underlying the barley response to BaYMV. The resistance mechanism directly targets the virus. Moreover, the resistance genes/cultivars were classified into the following three groups according to their BaYMV titer: (i) immune (BaYMV was undetectable in the roots or leaves), (ii) partially immune (BaYMV was detected in the roots but not in the leaves), and (iii) susceptible (BaYMV was detected in the roots and leaves). Our results clarified the functions of the resistance genes in barley roots and leaves following a BaYMV infection. We anticipate our analysis to be a starting point for more understanding of the correspondence between resistance genes of Triticeae and the soil-borne viruses.


Assuntos
Resistência à Doença , Hordeum , Doenças das Plantas , Folhas de Planta , Raízes de Plantas , Hordeum/virologia , Hordeum/genética , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Raízes de Plantas/virologia , Raízes de Plantas/genética , Folhas de Planta/virologia , Resistência à Doença/genética , Replicação Viral/genética , Genes de Plantas/genética , Potyviridae/fisiologia , Potyviridae/genética
7.
Breed Sci ; 73(4): 401-407, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38106507

RESUMO

Closed fertilization in flowers, or cleistogamy, reduces the risk of fungal infection in Triticeae crops. In barley (Hordeum vulgare), cleistogamy is determined by a single recessive gene, cly1, which results from a single nucleotide polymorphism within the microRNA172 target site of the Apetala2 (AP2) transcription factor gene. The recessive cly1 allele negatively regulates the development of lodicules, keeping florets closed at anthesis. However, cleistogamy is not evident in hexaploid wheat (Triticum aestivum) cultivars. This study aimed at identifying mutations in wheat AP2 orthologs by ethyl methane sulfonate-induced mutagenesis and high-resolution melt analysis. Although flowers of AP2 mutants induced in the A and D genomes opened at anthesis, their lodicule size was significantly smaller, especially in the direction of depth, than that of wild-type plants. One of the mutants that carried a nucleotide replacement in AP2 from the D genome produced a compact spike caused by a substantial decrease in rachis internode length, analogous to the barley dense spike. Cleistogamous hexaploid wheat might be generated by combining effective mutant alleles of AP2-homoeologous genes.

8.
Plant Cell Physiol ; 63(11): 1584-1591, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-35765920

RESUMO

Our industrial-scale crop monocultures, which are necessary to provide grain for large-scale food and feed production, are highly vulnerable to biotic and abiotic stresses. Crop wild relatives have adapted to harsh environmental conditions over millennia; thus, they are an important source of genetic variation and crop diversification. Despite several examples where significant yield increases have been achieved through the introgression of genomic regions from wild relatives, more detailed understanding of the differences between wild and cultivated species for favorable and unfavorable traits is still required to harness these valuable resources. Recently, as an alternative to the introgression of beneficial alleles from the wild into domesticated species, a radical suggestion is to domesticate wild relatives to generate new crops. A first and critical step for the domestication of cereal wild relatives would be to prevent grain disarticulation from the inflorescence at maturity. Discovering the molecular mechanisms and understanding the network of interactions behind grain retention/disarticulation would enable the implementation of approaches to select for this character in targeted species. Brittle rachis 1 and Brittle rachis 2 are major genes responsible for grain disarticulation in the wild progenitors of wheat and barley that were the target of mutations during domestication. These two genes are only found in the Triticeae tribe and are hypothesized to have evolved by a duplication followed by neo-functionalization. Current knowledge gaps include the molecular mechanisms controlling grain retention in cereals and the genomic consequences of strong selection for this essential character.


Assuntos
Hordeum , Hordeum/genética , Triticum/genética , Grão Comestível/genética , Desarticulação , Domesticação
9.
Proc Natl Acad Sci U S A ; 116(11): 5182-5187, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30792353

RESUMO

Floret fertility is a key determinant of the number of grains per inflorescence in cereals. During the evolution of wheat (Triticum sp.), floret fertility has increased, such that current bread wheat (Triticum aestivum) cultivars set three to five grains per spikelet. However, little is known regarding the genetic basis of floret fertility. The locus Grain Number Increase 1 (GNI1) is shown here to be an important contributor to floret fertility. GNI1 evolved in the Triticeae through gene duplication. The gene, which encodes a homeodomain leucine zipper class I (HD-Zip I) transcription factor, was expressed most abundantly in the most apical floret primordia and in parts of the rachilla, suggesting that it acts to inhibit rachilla growth and development. The level of GNI1 expression has decreased over the course of wheat evolution under domestication, leading to the production of spikes bearing more fertile florets and setting more grains per spikelet. Genetic analysis has revealed that the reduced-function allele GNI-A1 contributes to the increased number of fertile florets per spikelet. The RNAi-based knockdown of GNI1 led to an increase in the number of both fertile florets and grains in hexaploid wheat. Mutants carrying an impaired GNI-A1 allele out-yielded WT allele carriers under field conditions. The data show that gene duplication generated evolutionary novelty affecting floret fertility while mutations favoring increased grain production have been under selection during wheat evolution under domestication.


Assuntos
Fertilidade/genética , Flores/genética , Flores/fisiologia , Genes Homeobox , Mutação/genética , Triticum/genética , Triticum/fisiologia , Alelos , Clonagem Molecular , Evolução Molecular , Flores/anatomia & histologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ploidias , Locos de Características Quantitativas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triticum/anatomia & histologia
10.
Breed Sci ; 72(5): 372-382, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36776442

RESUMO

Japanese soil-borne wheat mosaic virus (Furovirus) is a damaging pathogen of wheat and barley. This virus can survive in the soil for several decades, so the deployment of resistant cultivars represents the only practical control measure. Here, a genetic analysis has identified two regions of the barley genome-one on chromosome 2H and the other on chromosome 3H-as harboring gene(s) encoding resistance to this virus. The joint presence of both loci, termed Jmv1 and Jmv2, made the plants essentially immune, with resistance being dominant over susceptibility at each locus. Phylogenetic analysis showed that the virus is not closely related to the type Furovirus species Soil-borne wheat mosaic virus. There was a difference between the RNA1- and RNA2-based phylogenies of the virus species in Furovirus implying the independent segregation of the virus subgenomes.

11.
Breed Sci ; 72(4): 297-305, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36699820

RESUMO

'Kitahonami' is a soft red winter wheat (Triticum aestivum L.) cultivar that has high yield, good agronomic performance and good quality characteristics. It currently accounts for 73% of the wheat cultivation area of Hokkaido the northern island in Japan and 42% of Japan's overall wheat cultivation. However, this cultivar is susceptible to Wheat yellow mosaic virus (WYMV). WYMV has become widespread recently, with serious virus damage reported in Tokachi and Ohotsuku districts, which are the main wheat production areas in Hokkaido. Here, we report a new wheat breeding line 'Kitami-94', which was developed over four years by repeated backcrossing with 'Kitahonami' using DNA markers for WYMV resistance linked to the Qym1 and Qym2 from 'Madsen'. Basic maps of Qym1 and Qym2 were created and used to confirm that 'Kitami-94' reliably carried the two resistance genes. 'Kitami-94' demonstrated WYMV resistance, and had agronomic traits and quality equivalent to 'Kitahonami' except for higher polyphenol oxidase activity and lower thousand grain weight. 'Kitami-94' may be useful for elucidating the mechanism of WYMV resistance in the background of 'Kitahonami', and for developing new cultivars.

12.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36613901

RESUMO

Sucrose nonfermenting 2 (Snf2) family proteins, as the catalytic core of ATP-dependent chromatin remodeling complexes, play important roles in nuclear processes as diverse as DNA replication, transcriptional regulation, and DNA repair and recombination. The Snf2 gene family has been characterized in several plant species; some of its members regulate flower development in Arabidopsis. However, little is known about the members of the family in barley (Hordeum vulgare). Here, 38 Snf2 genes unevenly distributed among seven chromosomes were identified from the barley (cv. Morex) genome. Phylogenetic analysis categorized them into 18 subfamilies. They contained combinations of 21 domains and consisted of 3 to 34 exons. Evolution analysis revealed that segmental duplication contributed predominantly to the expansion of the family in barley, and the duplicated gene pairs have undergone purifying selection. About eight hundred Snf2 family genes were identified from 20 barley accessions, ranging from 38 to 41 genes in each. Most of these genes were subjected to purification selection during barley domestication. Most were expressed abundantly during spike development. This study provides a comprehensive characterization of barley Snf2 family members, which should help to improve our understanding of their potential regulatory roles in barley spike development.


Assuntos
Arabidopsis , Hordeum , Genoma de Planta , Hordeum/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica
13.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886984

RESUMO

Freezing stress is a major factor limiting production and geographical distribution of temperate crops. Elongator is a six subunit complex with histone acetyl-transferase activity and is involved in plant development and defense responses in Arabidopsis thaliana. However, it is unknown whether and how an elongator responds to freezing stress in plants. In this study, we found that wheat elongator subunit 4 (TaELP4) negatively regulates freezing tolerance through ethylene signaling. TaELP4 promoter contained cold response elements and was up-regulated in freezing stress. Subcellular localization showed that TaELP4 and AtELP4 localized in the cytoplasm and nucleus. Silencing of TaELP4 in wheat with BSMV-mediated VIGS approach significantly elevated tiller survival rate compared to control under freezing stress, but ectopic expression of TaELP4 in Arabidopsis increased leaf damage and survival rate compared with Col-0. Further results showed that TaELP4 positively regulated ACS2 and ACS6 transcripts, two main limiting enzymes in ethylene biosynthesis. The determination of ethylene content showed that TaELP4 overexpression resulted in more ethylene accumulated than Col-0 under freezing stress. Epigenetic research showed that histone H3K9/14ac levels significantly increased in coding/promoter regions of AtACS2 and AtACS6 in Arabidopsis. RT-qPCR assays showed that the EIN2/EIN3/EIL1-CBFs-COR pathway was regulated by TaELP4 under freezing stress. Taken together, our results suggest that TaELP4 negatively regulated plant responses to freezing stress via heightening histone acetylation levels of ACS2 and ACS6 and increasing their transcription and ethylene accumulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Etilenos/metabolismo , Congelamento , Regulação da Expressão Gênica de Plantas , Histonas/genética , Histonas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Triticum/genética , Triticum/metabolismo
14.
Theor Appl Genet ; 134(10): 3183-3193, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34125245

RESUMO

KEY MESSAGE: A chasmogamous mutant was induced by exposing a cleistogamous cultivar to sodium azide. The altered cly1 sequence in the mutant was not in the miR172 binding site, as is the case in other known cleistogamous alleles, but rather in a region encoding one of the gene product's two AP2 domains. The genetic basis of cleistogamy (in which pollination occurs before the flower opens) in barley is centered on the Cleistogamy 1 locus (cly1). The sequence of the microRNA (miR172)-targeting site in the gene, which belongs to the APETALA2 family, differs between cleistogamous and chasmogamous cultivars at a single nucleotide position, resulting in the differential ability of the lodicules to swell. Here, mutagenesis of the barley cultivar 'Misato Golden' (which carries the cly1.b allele), achieved using sodium azide, was used to induce a change from cleistogamy to chasmogamy (non-cleistogamous flowering). The cly1 coding sequence in the selected mutant differed from that of cly1.b by two non-synonymous mutations, one of which was responsible for an altered residue in one of the AP2 domains present in the Cly1 protein. Although there was no difference in the miR172 targeting site between cly1.b and the novel allele (designated cly1.b3), the mutant's lodicules' ability to swell was indistinguishable from that observed in cultivars carrying the chasmogamous allele Cly1.a. The phenotype of cly1.b3/cly1.b, cly1.b3/cly1.b2 and cly1.b3/cly1.c heterozygotes indicated that cly1.b3 is recessive or incompletely dominant with respect to these alleles.


Assuntos
Cromossomos de Plantas/genética , Flores/genética , Hordeum/genética , Mutação , Proteínas de Plantas/metabolismo , Polinização , Característica Quantitativa Herdável , Alelos , Mapeamento Cromossômico/métodos , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Hordeum/crescimento & desenvolvimento , MicroRNAs/genética , Fenótipo , Proteínas de Plantas/genética , RNA Mensageiro/genética
15.
Ann Bot ; 127(3): 297-304, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-32766735

RESUMO

BACKGROUND AND AIMS: The brittle rachis trait is a feature of many wild grasses, particularly within the tribe Triticeae. Wild Hordeum and Triticum species form a disarticulation layer above the rachis node, resulting in the production of wedge-type dispersal units. In Aegilops longissima, only one or two of the nodes in the central portion of its rachis are brittle. In Triticeae species, the formation of a disarticulation layer above the rachis node requires the co-transcription of the two dominant and complementary genes Btr1 and Btr2. This study aims to establish whether homologues of Btr1 and/or Btr2 underlie the unusual brittle rachis phenotype observed in Ae. longissima. METHODS: Scanning electron microscopy was used to examine the disarticulation surfaces. Quantitative RT-PCR and RNA in situ hybridization experiments were used to identify gene expression in the immature inflorescence. KEY RESULTS: Analysis based on scanning electron microscopy was able to demonstrate that the disarticulation surfaces formed in the Ae. longissima rachis are morphologically indistinguishable from those formed in the rachises of wild Hordeum and Triticum species. RNA in situ hybridization showed that in the immature Ae. longissima inflorescence, the intensity of Btr1 transcription varied from high at the rachis base to low at its apex, while that of Btr2 was limited to the nodes in the central to distal portion of the rachis. CONCLUSIONS: The disarticulation pattern shown by Ae. longissima results from the limitation of Btr1 and Btr2 co-expression to nodes lying in the centre of the rachis.


Assuntos
Aegilops , Hordeum , Desarticulação , Genes de Plantas , Hordeum/genética , Triticum/genética
16.
Breed Sci ; 70(5): 617-622, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33603558

RESUMO

Soil-borne wheat mosaic virus (SBWMV), a ubiquitous pathogen commonly encountered in temperate regions of the Northern hemisphere, can damage a number of economically important cereal crops, notably wheat and barley. Given that the plasmodiophorid cercozoan Polymyxa graminis, which acts as the vector of SBWMV, can survive in the soil for many decades, the only feasible control measure is the deployment of resistant cultivars. Here, a quantitative trait locus (QTL) approach was taken to characterize the genetic basis of the SBWMV resistance exhibited by the barley cultivar Haruna Nijo. The analysis revealed that between 33% and 41% of the variation for the measure chosen to represent resistance was under the control of a gene(s) mapping to a region at the distal end of the short arm of chromosome 2H. In contrast to most of the genes known to encode resistance to soil-borne mosaic viruses, the allele specifying resistance was dominant over those present in a susceptible genotype.

17.
Plant J ; 94(3): 525-534, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29469199

RESUMO

Wild barley forms a two-rowed spike with a brittle rachis whereas domesticated barley has two- or six-rowed spikes with a tough rachis. Like domesticated barley, 'agriocrithon' forms a six-rowed spike; however, the spike is brittle as in wild barley, which makes the origin of agriocrithon obscure. Haplotype analysis of the Six-rowed spike 1 (vrs1) and Non-brittle rachis 1 (btr1) and 2 (btr2) genes was conducted to infer the origin of agriocrithon barley. Some agriocrithon barley accessions (eu-agriocrithon) carried Btr1 and Btr2 haplotypes that are not found in any cultivars, implying that they are directly derived from wild barley through a mutation at the vrs1 locus. Other agriocrithon barley accessions (pseudo-agriocrithon) carried Btr1 or Btr2 from cultivated barley, thus implying that they originated from hybridization between six-rowed landraces carrying btr1Btr2 and Btr1btr2 genotypes followed by recombination to produce Btr1Btr2. All materials we collected from Tibet belong to pseudo-agriocrithon and thus do not support the Tibetan Plateau as being a center of barley domestication. Tracing the evolutionary history of these allelic variants revealed that eu-agriocrithon represents six-rowed barley lineages that were selected by early farmers, once in south-eastern Turkmenistan (vrs1.a1) and again in the eastern part of Uzbekistan (vrs1.a4).


Assuntos
Domesticação , Hordeum/genética , Produção Agrícola , Genes de Plantas/genética , Haplótipos/genética , Hordeum/anatomia & histologia , Filogenia , Tibet , Turcomenistão , Uzbequistão
18.
Plant Cell Physiol ; 59(4): 806-822, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29401261

RESUMO

The cuticle coats the primary aerial surfaces of land plants. It consists of cutin and waxes, which provide protection against desiccation, pathogens and herbivores. Acyl cuticular waxes are synthesized via elongase complexes that extend fatty acyl precursors up to 38 carbons for downstream modification pathways. The leaves of 21 barley eceriferum (cer) mutants appear to have less or no epicuticular wax crystals, making these mutants excellent tools for identifying elongase and modification pathway biosynthetic genes. Positional cloning of the gene mutated in cer-zh identified an elongase component, ß-ketoacyl-CoA synthase (CER-ZH/HvKCS1) that is one of 34 homologous KCSs encoded by the barley genome. The biochemical function of CER-ZH was deduced from wax and cutin analyses and by heterologous expression in yeast. Combined, these experiments revealed that CER-ZH/HvKCS1 has a substrate specificity for C16-C20, especially unsaturated, acyl chains, thus playing a major role in total acyl chain elongation for wax biosynthesis. The contribution of CER-ZH to water barrier properties of the cuticle and its influence on the germination of barley powdery mildew fungus were also assessed.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Ascomicetos/crescimento & desenvolvimento , Hordeum/enzimologia , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Ceras/metabolismo , Mapeamento Cromossômico , Sequência Conservada , Cristalografia por Raios X , Desidratação , Secas , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudos de Associação Genética , Hordeum/genética , Lipídeos de Membrana/metabolismo , Mutação/genética , Fenótipo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/genética , Transcrição Gênica
19.
Plant Physiol ; 175(4): 1720-1731, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29101279

RESUMO

Increasing grain yield is an endless challenge for cereal crop breeding. In barley (Hordeum vulgare), grain number is controlled mainly by Six-rowed spike 1 (Vrs1), which encodes a homeodomain leucine zipper class I transcription factor. However, little is known about the genetic basis of grain size. Here, we show that extreme suppression of lateral florets contributes to enlarged grains in deficiens barley. Through a combination of fine-mapping and resequencing of deficiens mutants, we have identified that a single amino acid substitution at a putative phosphorylation site in VRS1 is responsible for the deficiens phenotype. deficiens mutant alleles confer an increase in grain size, a reduction in plant height, and a significant increase in thousand grain weight in contemporary cultivated germplasm. Haplotype analysis revealed that barley carrying the deficiens allele (Vrs1.t1) originated from two-rowed types carrying the Vrs1.b2 allele, predominantly found in germplasm from northern Africa. In situ hybridization of histone H4, a marker for cell cycle or proliferation, showed weaker expression in the lateral spikelets compared with central spikelets in deficiens Transcriptome analysis revealed that a number of histone superfamily genes were up-regulated in the deficiens mutant, suggesting that enhanced cell proliferation in the central spikelet may contribute to larger grains. Our data suggest that grain yield can be improved by suppressing the development of specific organs that are not positively involved in sink/source relationships.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Hordeum/fisiologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Haplótipos , Hordeum/genética , Mutação , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Transcrição Gênica
20.
Ann Bot ; 122(2): 251-265, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790929

RESUMO

Background and Aims: Floret opening in barley is induced by the swelling of the lodicule, a trait under the control of the cleistogamy1 (cly1) gene. The product of cly1 is a member of the APETALA2 (AP2) transcription factor family, which inhibits lodicule development. A sequence polymorphism at the miR172 target site within cly1 has been associated with variation in lodicule development and hence with the cleistogamous phenotype. It was unclear whether miR172 actually functions in cly1 regulation and, if it does, which miR172 gene contributes to cleistogamy. It was also interesting to explore whether miR172-mediated cly1 regulation occurs at transcriptional level or at translational level. Methods: Deep sequencing of small RNA identified the miR172 sequences expressed in barley immature spikes. miR172 genes were confirmed by computational and expression analysis. miR172 and cly1 expression profiles were determined by in situ hybridization and quantitative expression analysis. Immunoblot analysis provided the CLY1 protein quantifications. Definitive evidence of the role of miR172 in cleistogamy was provided by a transposon Ds-induced mutant of Hv-miR172a. Key Results: A small RNA analysis of the immature barley spike revealed three isomers, miR172a, b and c, of which miR172a was the most abundant. In situ hybridization analysis showed that miR172 and cly1 co-localize in the lodicule primordium, suggesting that these two molecules potentially interact with one another. Immunoblot analysis showed that the sequence polymorphism at the miR172 target site within cly1 reduced the abundance of the CLY1 protein, but not that of its transcript. In a Ds-induced mutant of Hv-miR172a, which generates no mature miR172a, the lodicules fail to grow, resulting in a very small lodicule. Conclusions: Direct evidence is presented to show that miR172a acts to reduce the abundance of the CLY1 protein, which enables open flowering in barley.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum/genética , MicroRNAs/genética , Polimorfismo Genético/genética , Biossíntese de Proteínas/genética , Fatores de Transcrição/metabolismo , Regulação para Baixo , Flores/genética , Flores/metabolismo , Biblioteca Gênica , Hordeum/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA