Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 30(3): 298-307, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164606

RESUMO

Several methods are available to visualize and assess the kinetics and efficiency of elemental steps of protein biosynthesis. However, each of these methods has its own limitations. Here, we present a novel, simple and convenient tool for monitoring stepwise in vitro translation initiated by BODIPY-Met-tRNA. Synthesis and release of very short, 1-7 amino acids, BODIPY-labeled peptides, can be monitored using urea-polyacrylamide gel electrophoresis. Very short BODIPY-labeled oligopeptides might be resolved this way, in contrast to widely used Tris-tricine gel electrophoresis, which is suitable to separate peptides larger than 1 kDa. The method described in this manuscript allows one to monitor the steps of translation initiation, peptide transfer, translocation, and termination as well as their inhibition at an unprecedented single amino acid resolution.


Assuntos
Compostos de Boro , Peptídeos , Aminoacil-RNA de Transferência , Aminoacil-RNA de Transferência/química , Peptídeos/metabolismo , RNA de Transferência/metabolismo , Eletroforese em Gel de Poliacrilamida , Biossíntese de Proteínas
2.
Nucleic Acids Res ; 51(1): 449-462, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36546783

RESUMO

Thermorubin (THR) is an aromatic anthracenopyranone antibiotic active against both Gram-positive and Gram-negative bacteria. It is known to bind to the 70S ribosome at the intersubunit bridge B2a and was thought to inhibit factor-dependent initiation of translation and obstruct the accommodation of tRNAs into the A site. Here, we show that thermorubin causes ribosomes to stall in vivo and in vitro at internal and termination codons, thereby allowing the ribosome to initiate protein synthesis and translate at least a few codons before stalling. Our biochemical data show that THR affects multiple steps of translation elongation with a significant impact on the binding stability of the tRNA in the A site, explaining premature cessation of translation. Our high-resolution crystal and cryo-EM structures of the 70S-THR complex show that THR can co-exist with P- and A-site tRNAs, explaining how ribosomes can elongate in the presence of the drug. Remarkable is the ability of THR to arrest ribosomes at the stop codons. Our data suggest that by causing structural re-arrangements in the decoding center, THR interferes with the accommodation of tRNAs or release factors into the ribosomal A site.


Assuntos
Antraquinonas , Antibacterianos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Biossíntese de Proteínas , Antibacterianos/farmacologia , Códon de Terminação/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Ribossomos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Antraquinonas/farmacologia
3.
Curr Issues Mol Biol ; 46(2): 1107-1120, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38392188

RESUMO

The OCT4 transcription factor is necessary to maintain cell stemness in the early stages of embryogenesis and is involved in the formation of induced pluripotent stem cells, but its role in oncogenesis is not yet entirely clear. In this work, OCT4 expression was investigated in malignant gliomas. Twenty glioma cell lines and a sample of normal adult brain tissue were used. OCT4 expression was found in all studied glioma cell lines but was not detected in normal adult brain tissue. For one of these lines, OCT4 knockdown caused tumor cell death. By varying the culture conditions of these cells, we unexpectedly found that OCT4 expression increased when cells were incubated in serum-free medium, and this effect was significantly enhanced in serum-free and L-glutamine-free medium. L-glutamine and the Krebs cycle, which is slowed down in serum-free medium according to our NMR data, are sources of α-KG. Thus, our data indicate that OCT4 expression in gliomas may be regulated by the α-KG-dependent metabolic reprogramming of cells.

4.
J Biol Chem ; 298(5): 101914, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398352

RESUMO

N-terminal acetylation is widespread in the eukaryotic proteome but in bacteria is restricted to a small number of proteins mainly involved in translation. It was long known that elongation factor Tu (EF-Tu) is N-terminally acetylated, whereas the enzyme responsible for this process was unclear. Here, we report that RimI acetyltransferase, known to modify ribosomal protein S18, is likewise responsible for N-acetylation of the EF-Tu. With the help of inducible tufA expression plasmid, we demonstrated that the acetylation does not alter the stability of EF-Tu. Binding of aminoacyl tRNA to the recombinant EF-Tu in vitro was found to be unaffected by the acetylation. At the same time, with the help of fast kinetics methods, we demonstrate that an acetylated variant of EF-Tu more efficiently accelerates A-site occupation by aminoacyl-tRNA, thus increasing the efficiency of in vitro translation. Finally, we show that a strain devoid of RimI has a reduced growth rate, expanded to an evolutionary timescale, and might potentially promote conservation of the acetylation mechanism of S18 and EF-Tu. This study increased our understanding of the modification of bacterial translation apparatus.


Assuntos
Acetiltransferases , Bactérias/metabolismo , Fator Tu de Elongação de Peptídeos , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Guanosina Trifosfato/metabolismo , Cinética , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Proteínas Ribossômicas , Ribossomos/metabolismo
5.
PLoS Biol ; 18(1): e3000593, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31995552

RESUMO

During host colonization, bacteria use the alarmones (p)ppGpp to reshape their proteome by acting pleiotropically on DNA, RNA, and protein synthesis. Here, we elucidate how the initiating ribosome senses the cellular pool of guanosine nucleotides and regulates the progression towards protein synthesis. Our results show that the affinity of guanosine triphosphate (GTP) and the inhibitory concentration of ppGpp for the 30S-bound initiation factor IF2 vary depending on the programmed mRNA. The TufA mRNA enhanced GTP affinity for 30S complexes, resulting in improved ppGpp tolerance and allowing efficient protein synthesis. Conversely, the InfA mRNA allowed ppGpp to compete with GTP for IF2, thus stalling 30S complexes. Structural modeling and biochemical analysis of the TufA mRNA unveiled a structured enhancer of translation initiation (SETI) composed of two consecutive hairpins proximal to the translation initiation region (TIR) that largely account for ppGpp tolerance under physiological concentrations of guanosine nucleotides. Furthermore, our results show that the mechanism enhancing ppGpp tolerance is not restricted to the TufA mRNA, as similar ppGpp tolerance was found for the SETI-containing Rnr mRNA. Finally, we show that IF2 can use pppGpp to promote the formation of 30S initiation complexes (ICs), albeit requiring higher factor concentration and resulting in slower transitions to translation elongation. Altogether, our data unveil a novel regulatory mechanism at the onset of protein synthesis that tolerates physiological concentrations of ppGpp and that bacteria can exploit to modulate their proteome as a function of the nutritional shift happening during stringent response and infection.


Assuntos
Guanosina Tetrafosfato/farmacologia , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Ligação Competitiva , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Interações Hospedeiro-Patógeno/fisiologia , Cinética , Conformação de Ácido Nucleico , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , Iniciação Traducional da Cadeia Peptídica/fisiologia , Fator Tu de Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/química , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética
6.
Nucleic Acids Res ; 49(12): 6958-6970, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34161576

RESUMO

Initiation factor IF3 is an essential protein that enhances the fidelity and speed of bacterial mRNA translation initiation. Here, we describe the dynamic interplay between IF3 domains and their alternative binding sites using pre-steady state kinetics combined with molecular modelling of available structures of initiation complexes. Our results show that IF3 accommodates its domains at velocities ranging over two orders of magnitude, responding to the binding of each 30S ligand. IF1 and IF2 promote IF3 compaction and the movement of the C-terminal domain (IF3C) towards the P site. Concomitantly, the N-terminal domain (IF3N) creates a pocket ready to accept the initiator tRNA. Selection of the initiator tRNA is accompanied by a transient accommodation of IF3N towards the 30S platform. Decoding of the mRNA start codon displaces IF3C away from the P site and rate limits translation initiation. 70S initiation complex formation brings IF3 domains in close proximity to each other prior to dissociation and recycling of the factor for a new round of translation initiation. Altogether, our results describe the kinetic spectrum of IF3 movements and highlight functional transitions of the factor that ensure accurate mRNA translation initiation.


Assuntos
Proteínas de Bactérias/metabolismo , Iniciação Traducional da Cadeia Peptídica , Fator de Iniciação 3 em Procariotos/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Transferência Ressonante de Energia de Fluorescência , Cinética , Modelos Moleculares , Fator de Iniciação 1 em Procariotos/metabolismo , Fator de Iniciação 2 em Procariotos/metabolismo , Fator de Iniciação 3 em Procariotos/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos , RNA de Transferência de Metionina/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo
7.
Nucleic Acids Res ; 49(14): 8355-8369, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34255840

RESUMO

In the cell, stalled ribosomes are rescued through ribosome-associated protein quality-control (RQC) pathways. After splitting of the stalled ribosome, a C-terminal polyalanine 'tail' is added to the unfinished polypeptide attached to the tRNA on the 50S ribosomal subunit. In Bacillus subtilis, polyalanine tailing is catalyzed by the NEMF family protein RqcH, in cooperation with RqcP. However, the mechanistic details of this process remain unclear. Here we demonstrate that RqcH is responsible for tRNAAla selection during RQC elongation, whereas RqcP lacks any tRNA specificity. The ribosomal protein uL11 is crucial for RqcH, but not RqcP, recruitment to the 50S subunit, and B. subtilis lacking uL11 are RQC-deficient. Through mutational mapping, we identify critical residues within RqcH and RqcP that are important for interaction with the P-site tRNA and/or the 50S subunit. Additionally, we have reconstituted polyalanine-tailing in vitro and can demonstrate that RqcH and RqcP are necessary and sufficient for processivity in a minimal system. Moreover, the in vitro reconstituted system recapitulates our in vivo findings by reproducing the importance of conserved residues of RqcH and RqcP for functionality. Collectively, our findings provide mechanistic insight into the role of RqcH and RqcP in the bacterial RQC pathway.


Assuntos
Bacillus subtilis/genética , DNA Helicases/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Peptídeos/genética , Peptídeos/metabolismo , RNA de Transferência , Subunidades Ribossômicas Maiores de Bactérias/genética
8.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768413

RESUMO

Proteasomes exist in mammalian cells in multiple combinatorial variants due to the diverse regulatory particles and exchange of catalytic subunits. Here, using biotin carboxyl carrier domain of transcarboxylase from Propionibacterium shermanii fused with different proteasome subunits of catalytic and regulatory particles, we report comprehensive characterization of highly homogenous one-step purified human constitutive and immune 20S and 26S/30S proteasomes. Hydrolysis of a multiple sclerosis (MS) autoantigen, myelin basic protein (MBP), by engineered human proteasomes with different catalytic phenotypes, revealed that peptides which may be directly loaded on the HLA class I molecules are produced mainly by immunoproteasomes. We detected at least five MBP immunodominant core regions, namely, LPRHRDTGIL, SLPQKSHGR, QDENPVVHFF, KGRGLSLSRF and GYGGRASDY. All peptides, except QDENPVVHFF, which originates from the encephalitogenic MBP part, were associated with HLA I alleles considered to increase MS risk. Prediction of the affinity of HLA class I to this peptide demonstrated that MS-protective HLA-A*44 and -B*35 molecules are high-affinity binders, whereas MS-associated HLA-A*23, -A*24, -A*26 and -B*51 molecules tend to have moderate to low affinity. The HLA-A*44 molecules may bind QDENPVVHFF and its deamidated form in several registers with unprecedently high affinity, probably linking its distinct protective phenotype with thymic depletion of the repertoire of autoreactive cytotoxic T cells or induction of CD8+ regulatory T cells, specific to the encephalitogenic MBP peptide.


Assuntos
Esclerose Múltipla , Proteína Básica da Mielina , Animais , Humanos , Proteína Básica da Mielina/metabolismo , Complexo de Endopeptidases do Proteassoma , Ligantes , Fragmentos de Peptídeos , Peptídeos/química , Esclerose Múltipla/genética , Epitopos Imunodominantes , Antígenos HLA-A , Mamíferos/metabolismo
9.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298065

RESUMO

The protein encoded by the vaccinia virus D4R gene has base excision repair uracil-DNA N-glycosylase (vvUNG) activity and also acts as a processivity factor in the viral replication complex. The use of a protein unlike PolN/PCNA sliding clamps is a unique feature of orthopoxviral replication, providing an attractive target for drug design. However, the intrinsic processivity of vvUNG has never been estimated, leaving open the question whether it is sufficient to impart processivity to the viral polymerase. Here, we use the correlated cleavage assay to characterize the translocation of vvUNG along DNA between two uracil residues. The salt dependence of the correlated cleavage, together with the similar affinity of vvUNG for damaged and undamaged DNA, support the one-dimensional diffusion mechanism of lesion search. Unlike short gaps, covalent adducts partly block vvUNG translocation. Kinetic experiments show that once a lesion is found it is excised with a probability ~0.76. Varying the distance between two uracils, we use a random walk model to estimate the mean number of steps per association with DNA at ~4200, which is consistent with vvUNG playing a role as a processivity factor. Finally, we show that inhibitors carrying a tetrahydro-2,4,6-trioxopyrimidinylidene moiety can suppress the processivity of vvUNG.


Assuntos
Uracila-DNA Glicosidase , Vaccinia virus , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo , Vaccinia virus/genética , DNA/metabolismo , Replicação Viral , Reparo do DNA , Uracila/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Replicação do DNA
10.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894830

RESUMO

The potential of standard methods of radiation therapy is limited by the dose that can be safely delivered to the tumor, which could be too low for radical treatment. The dose efficiency can be increased by using radiosensitizers. In this study, we evaluated the sensitizing potential of biocompatible iron oxide nanoparticles coated with a dextran shell in A172 and Gl-Tr glioblastoma cells in vitro. The cells preincubated with nanoparticles for 24 h were exposed to ionizing radiation (X-ray, gamma, or proton) at doses of 0.5-6 Gy, and their viability was assessed by the Resazurin assay and by staining of the surviving cells with crystal violet. A statistically significant effect of radiosensitization by nanoparticles was observed in both cell lines when cells were exposed to 35 keV X-rays. A weak radiosensitizing effect was found only in the Gl-Tr line for the 1.2 MeV gamma irradiation and there was no radiosensitizing effect in both lines for the 200 MeV proton irradiation at the Bragg peak. A slight (ca. 10%) increase in the formation of additional reactive oxygen species after X-ray irradiation was found when nanoparticles were present. These results suggest that the nanoparticles absorbed by glioma cells can produce a significant radiosensitizing effect, probably due to the action of secondary electrons generated by the magnetite core, whereas the dextran shell of the nanoparticles used in these experiments appears to be rather stable under radiation exposure.


Assuntos
Glioma , Nanopartículas Metálicas , Nanopartículas , Radiossensibilizantes , Humanos , Radiossensibilizantes/farmacologia , Radiossensibilizantes/química , Dextranos/química , Prótons , Glioma/radioterapia , Glioma/patologia , Linhagem Celular Tumoral , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas Metálicas/química
11.
RNA ; 26(6): 715-723, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144191

RESUMO

Macrolides are one of the most successful and widely used classes of antibacterials, which kill or stop the growth of pathogenic bacteria by binding near the active site of the ribosome and interfering with protein synthesis. Dirithromycin is a derivative of the prototype macrolide erythromycin with additional hydrophobic side chain. In our recent study, we have discovered that the side chain of dirithromycin forms lone pair-π stacking interaction with the aromatic imidazole ring of the His69 residue in ribosomal protein uL4 of the Thermus thermophilus 70S ribosome. In the current work, we found that neither the presence of the side chain, nor the additional contact with the ribosome, improve the binding affinity of dirithromycin to the ribosome. Nevertheless, we found that dirithromycin is a more potent inhibitor of in vitro protein synthesis in comparison with its parent compound, erythromycin. Using high-resolution cryo-electron microscopy, we determined the structure of the dirithromycin bound to the translating Escherichia coli 70S ribosome, which suggests that the better inhibitory properties of the drug could be rationalized by the side chain of dirithromycin pointing into the lumen of the nascent peptide exit tunnel, where it can interfere with the normal passage of the growing polypeptide chain.


Assuntos
Antibacterianos/química , Eritromicina/análogos & derivados , Inibidores da Síntese de Proteínas/química , Ribossomos/química , Antibacterianos/farmacologia , Microscopia Crioeletrônica , Eritromicina/química , Eritromicina/farmacologia , Escherichia coli/genética , Modelos Moleculares , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , RNA Ribossômico 23S/química
12.
Nature ; 540(7631): 80-85, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27842381

RESUMO

In all domains of life, selenocysteine (Sec) is delivered to the ribosome by selenocysteine-specific tRNA (tRNASec) with the help of a specialized translation factor, SelB in bacteria. Sec-tRNASec recodes a UGA stop codon next to a downstream mRNA stem-loop. Here we present the structures of six intermediates on the pathway of UGA recoding in Escherichia coli by single-particle cryo-electron microscopy. The structures explain the specificity of Sec-tRNASec binding by SelB and show large-scale rearrangements of Sec-tRNASec. Upon initial binding of SelB-Sec-tRNASec to the ribosome and codon reading, the 30S subunit adopts an open conformation with Sec-tRNASec covering the sarcin-ricin loop (SRL) on the 50S subunit. Subsequent codon recognition results in a local closure of the decoding site, which moves Sec-tRNASec away from the SRL and triggers a global closure of the 30S subunit shoulder domain. As a consequence, SelB docks on the SRL, activating the GTPase of SelB. These results reveal how codon recognition triggers GTPase activation in translational GTPases.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Ribossomos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Códon de Terminação/química , Códon de Terminação/genética , Códon de Terminação/metabolismo , Microscopia Crioeletrônica , Endorribonucleases/metabolismo , Ativação Enzimática , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas Fúngicas/metabolismo , GTP Fosfo-Hidrolases/ultraestrutura , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Biossíntese de Proteínas , Domínios Proteicos , RNA de Transferência Aminoácido-Específico/química , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência Aminoácido-Específico/metabolismo , RNA de Transferência Aminoácido-Específico/ultraestrutura , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura , Ribossomos/química , Ribossomos/enzimologia , Ribossomos/ultraestrutura , Ricina/metabolismo , Selenocisteína/metabolismo
13.
Mol Cell ; 56(4): 531-40, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25306919

RESUMO

We demonstrate that the antibiotic amicoumacin A (AMI) is a potent inhibitor of protein synthesis. Resistance mutations in helix 24 of the 16S rRNA mapped the AMI binding site to the small ribosomal subunit. The crystal structure of bacterial ribosome in complex with AMI solved at 2.4 Å resolution revealed that the antibiotic makes contacts with universally conserved nucleotides of 16S rRNA in the E site and the mRNA backbone. Simultaneous interactions of AMI with 16S rRNA and mRNA and the in vivo experimental evidence suggest that it may inhibit the progression of the ribosome along mRNA. Consistent with this proposal, binding of AMI interferes with translocation in vitro. The inhibitory action of AMI can be partly compensated by mutations in the translation elongation factor G.


Assuntos
Antibacterianos/química , Cumarínicos/química , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/química , Estabilidade de RNA , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Cumarínicos/farmacologia , Cristalografia por Raios X , Farmacorresistência Bacteriana , Escherichia coli , Testes de Sensibilidade Microbiana , Modelos Moleculares , Fator G para Elongação de Peptídeos/genética , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/química , Staphylococcus aureus/genética , Thermus thermophilus
14.
Nature ; 520(7548): 567-70, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25707802

RESUMO

Single particle electron cryomicroscopy (cryo-EM) has recently made significant progress in high-resolution structure determination of macromolecular complexes due to improvements in electron microscopic instrumentation and computational image analysis. However, cryo-EM structures can be highly non-uniform in local resolution and all structures available to date have been limited to resolutions above 3 Å. Here we present the cryo-EM structure of the 70S ribosome from Escherichia coli in complex with elongation factor Tu, aminoacyl-tRNA and the antibiotic kirromycin at 2.65-2.9 Å resolution using spherical aberration (Cs)-corrected cryo-EM. Overall, the cryo-EM reconstruction at 2.9 Å resolution is comparable to the best-resolved X-ray structure of the E. coli 70S ribosome (2.8 Å), but provides more detailed information (2.65 Å) at the functionally important ribosomal core. The cryo-EM map elucidates for the first time the structure of all 35 rRNA modifications in the bacterial ribosome, explaining their roles in fine-tuning ribosome structure and function and modulating the action of antibiotics. We also obtained atomic models for flexible parts of the ribosome such as ribosomal proteins L9 and L31. The refined cryo-EM-based model presents the currently most complete high-resolution structure of the E. coli ribosome, which demonstrates the power of cryo-EM in structure determination of large and dynamic macromolecular complexes.


Assuntos
Microscopia Crioeletrônica , Escherichia coli/química , Escherichia coli/ultraestrutura , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/ultraestrutura , Ribossomos/química , Ribossomos/ultraestrutura , Antibacterianos/química , Antibacterianos/metabolismo , Microscopia Crioeletrônica/métodos , Ligantes , Modelos Moleculares , Fator Tu de Elongação de Peptídeos/metabolismo , Piridonas/química , Piridonas/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Bacteriano/ultraestrutura , RNA Ribossômico/química , RNA Ribossômico/metabolismo , RNA Ribossômico/ultraestrutura , RNA de Transferência/química , RNA de Transferência/metabolismo , RNA de Transferência/ultraestrutura , Ribossomos/metabolismo
15.
Biochemistry (Mosc) ; 86(10): 1214-1224, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34903159

RESUMO

Serpins constitute a large family of protease inhibitors with regulatory functions found in all living organisms. Most plant serpins have not been functionally characterized, with the exception of Arabidopsis thaliana AtSerpin1, an inhibitor of pro-apoptotic proteases, which is involved in the regulation of the programmed cell death induction, and Cucurbita maxima CmPS1, a phloem protein, which presumably inhibits insect digestive proteases and binds RNA. CmPS1 interacts most efficiently with highly structured RNA; in particular, it forms a specific complex with tRNA. Here, we demonstrated that AtSerpin1 also forms a complex with tRNA. Analysis of tRNA species bound by AtSerpin1 and CmPS1 in the presence of tRNA excess revealed that both proteins have no strict selectivity for individual tRNAs, suggesting specific interaction of AtSerpin1 and CmPS1 proteins with elements of the secondary/tertiary structure universal for all tRNAs. Analysis of CmPS1 binding of the microRNA precursor pre-miR390 and its mutants demonstrated that the pre-miR390 mutant with a perfect duplex in the hairpin stem lost the ability to form a discrete complex with CmPS1, whereas another variant of pre-miR390 with the native unpaired nucleotide residues in the stem retained this ability. These data indicate that specific interactions of plant serpins with structured RNA are based on the recognition of structurally unique spatial motifs formed with the participation of unpaired nucleotide residues in the RNA duplexes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cucurbita/metabolismo , MicroRNAs/metabolismo , RNA de Transferência/metabolismo , Serpinas/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Morte Celular/fisiologia , Cucurbita/citologia , Cucurbita/genética , MicroRNAs/genética , Inibidores de Proteases/metabolismo , RNA de Transferência/genética , Serpinas/genética
16.
Int J Mol Sci ; 22(17)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34502523

RESUMO

The growth of the polypeptide chain occurs due to the fast and coordinated work of the ribosome and protein elongation factors, EF-Tu and EF-G. However, the exact contribution of each of these components in the overall balance of translation kinetics remains not fully understood. We created an in vitro translation system Escherichia coli replacing either elongation factor with heterologous thermophilic protein from Thermus thermophilus. The rates of the A-site binding and decoding reactions decreased an order of magnitude in the presence of thermophilic EF-Tu, indicating that the kinetics of aminoacyl-tRNA delivery depends on the properties of the elongation factor. On the contrary, thermophilic EF-G demonstrated the same translocation kinetics as a mesophilic protein. Effects of translocation inhibitors (spectinomycin, hygromycin B, viomycin and streptomycin) were also similar for both proteins. Thus, the process of translocation largely relies on the interaction of tRNAs and the ribosome and can be efficiently catalysed by thermophilic EF-G even at suboptimal temperatures.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Elongação Traducional da Cadeia Peptídica , Fator Tu de Elongação de Peptídeos/metabolismo , Ribossomos/metabolismo , Thermus thermophilus , Fator G para Elongação de Peptídeos/metabolismo , RNA Bacteriano/metabolismo , RNA de Transferência/metabolismo
17.
Nucleic Acids Res ; 46(4): 1973-1983, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29390134

RESUMO

During amino acid starvation the Escherichia coli stringent response factor RelA recognizes deacylated tRNA in the ribosomal A-site. This interaction activates RelA-mediated synthesis of alarmone nucleotides pppGpp and ppGpp, collectively referred to as (p)ppGpp. These two alarmones are synthesized by addition of a pyrophosphate moiety to the 3' position of the abundant cellular nucleotide GTP and less abundant nucleotide GDP, respectively. Using untagged native RelA we show that allosteric activation of RelA by pppGpp increases the efficiency of GDP conversion to achieve the maximum rate of (p)ppGpp production. Using a panel of ribosomal RNA mutants, we show that the A-site finger structural element of 23S rRNA helix 38 is crucial for RelA binding to the ribosome and consequent activation, and deletion of the element severely compromises (p)ppGpp accumulation in E. coli upon amino acid starvation. Through binding assays and enzymology, we show that E. coli RelA does not form a stable complex with, and is not activated by, deacylated tRNA off the ribosome. This indicates that in the cell, RelA first binds the empty A-site and then recruits tRNA rather than first binding tRNA and then binding the ribosome.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , GTP Pirofosfoquinase/metabolismo , Ligases/metabolismo , RNA Ribossômico 23S/química , Ativação Enzimática , Proteínas de Escherichia coli/química , GTP Pirofosfoquinase/química , Ligases/química , Mutação , Fator G para Elongação de Peptídeos , Ligação Proteica , RNA Ribossômico 23S/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Ribossomos/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-30936109

RESUMO

Although macrolides are known as excellent antibacterials, their medical use has been significantly limited due to the spread of bacterial drug resistance. Therefore, it is necessary to develop new potent macrolides to combat the emergence of drug-resistant pathogens. One of the key steps in rational drug design is the identification of chemical groups that mediate binding of the drug to its target and their subsequent derivatization to strengthen drug-target interactions. In the case of macrolides, a few groups are known to be important for drug binding to the ribosome, such as desosamine. Search for new chemical moieties that improve the interactions of a macrolide with the 70S ribosome might be of crucial importance for the invention of new macrolides. For this purpose, here we studied a classic macrolide, dirithromycin, which has an extended (2-methoxyethoxy)-methyl side chain attached to the C-9/C-11 atoms of the macrolactone ring that can account for strong binding of dirithromycin to the 70S ribosome. By solving the crystal structure of the 70S ribosome in complex with dirithromycin, we found that its side chain interacts with the wall of the nascent peptide exit tunnel in an idiosyncratic fashion: its side chain forms a lone pair-π stacking interaction with the aromatic imidazole ring of the His69 residue in ribosomal protein uL4. To our knowledge, the ability of this side chain to form a contact in the macrolide binding pocket has not been reported previously and potentially can open new avenues for further exploration by medicinal chemists developing next-generation macrolide antibiotics active against resistant pathogens.


Assuntos
Eritromicina/análogos & derivados , Macrolídeos/farmacologia , Ribossomos/metabolismo , Amino Açúcares/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Eritromicina/farmacologia , Peptídeos/farmacologia , Estrutura Secundária de Proteína , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Ribossômicas/metabolismo
19.
Nat Chem Biol ; 13(10): 1129-1136, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28846667

RESUMO

Whereas screening of the small-molecule metabolites produced by most cultivatable microorganisms often results in the rediscovery of known compounds, genome-mining programs allow researchers to harness much greater chemical diversity, and result in the discovery of new molecular scaffolds. Here we report the genome-guided identification of a new antibiotic, klebsazolicin (KLB), from Klebsiella pneumoniae that inhibits the growth of sensitive cells by targeting ribosomes. A ribosomally synthesized post-translationally modified peptide (RiPP), KLB is characterized by the presence of a unique N-terminal amidine ring that is essential for its activity. Biochemical in vitro studies indicate that KLB inhibits ribosomes by interfering with translation elongation. Structural analysis of the ribosome-KLB complex showed that the compound binds in the peptide exit tunnel overlapping with the binding sites of macrolides or streptogramin-B. KLB adopts a compact conformation and largely obstructs the tunnel. Engineered KLB fragments were observed to retain in vitro activity, and thus have the potential to serve as a starting point for the development of new bioactive compounds.


Assuntos
Antibacterianos/farmacologia , Klebsiella pneumoniae/química , Peptídeos/farmacologia , Ribossomos/química , Ribossomos/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Sítios de Ligação/efeitos dos fármacos , Clonagem Molecular , Klebsiella pneumoniae/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Engenharia de Proteínas
20.
Nucleic Acids Res ; 45(12): 7507-7514, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28505372

RESUMO

The emergence of multi-drug resistant bacteria is limiting the effectiveness of commonly used antibiotics, which spurs a renewed interest in revisiting older and poorly studied drugs. Streptogramins A is a class of protein synthesis inhibitors that target the peptidyl transferase center (PTC) on the large subunit of the ribosome. In this work, we have revealed the mode of action of the PTC inhibitor madumycin II, an alanine-containing streptogramin A antibiotic, in the context of a functional 70S ribosome containing tRNA substrates. Madumycin II inhibits the ribosome prior to the first cycle of peptide bond formation. It allows binding of the tRNAs to the ribosomal A and P sites, but prevents correct positioning of their CCA-ends into the PTC thus making peptide bond formation impossible. We also revealed a previously unseen drug-induced rearrangement of nucleotides U2506 and U2585 of the 23S rRNA resulting in the formation of the U2506•G2583 wobble pair that was attributed to a catalytically inactive state of the PTC. The structural and biochemical data reported here expand our knowledge on the fundamental mechanisms by which peptidyl transferase inhibitors modulate the catalytic activity of the ribosome.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Peptidil Transferases/antagonistas & inibidores , Inibidores da Síntese de Proteínas/farmacologia , RNA de Transferência/antagonistas & inibidores , Ribossomos/efeitos dos fármacos , Estreptograminas/farmacologia , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Peptidil Transferases/química , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/química , RNA Ribossômico 23S/antagonistas & inibidores , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Estreptograminas/química , Thermus thermophilus/efeitos dos fármacos , Thermus thermophilus/enzimologia , Thermus thermophilus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA