RESUMO
IDO1 is an immunomodulatory enzyme responsible for tryptophan catabolism. Its expression in immune cells, especially the DCs, has attracted attention because it leads to tryptophan depletion at the immunological synapse, thereby causing T-cell anergy and immune evasion by the tumor cells. Cancer cells also overexpress IDO1. Immunotherapy targeting IDO1 has been one of the focus areas in cancer biology, but lately studies have identified non-immune related functions of IDO1 leading to a paradigm shift with regard to IDO1 function in the context of tumor cells. In this study, we show that PDAC tissues and PDAC cells overexpress IDO1. The expression level is reciprocally related to overall patient survival. We further show that carbidopa, an FDA-approved drug for Parkinson's disease as well as an AhR agonist, inhibits IDO1 expression in PDAC cells. Using athymic nude mice, we demonstrate that carbidopa-mediated suppression of IDO1 expression attenuates tumor growth. Mechanistically, we show that AhR is responsible for carbidopa-mediated suppression of IDO1, directly as a transcription factor and indirectly by interfering with the JAK/STAT pathway. Overall, targeting IDO1 not only in immune cells but also in cancer cells could be a beneficial therapeutic strategy for PDAC and potentially for other cancers as well and that carbidopa could be repurposed to treat cancers that overexpress IDO1.
Assuntos
Neoplasias Pancreáticas , Receptores de Hidrocarboneto Arílico , Animais , Carbidopa/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase , Janus Quinases/metabolismo , Cinurenina/metabolismo , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Triptofano/metabolismo , Neoplasias PancreáticasRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is lethal. There is a dire need for better therapeutic targets. Cancer cells have increased demand for sugars, amino acids, and lipids and therefore up-regulate various nutrient transporters to meet this demand. In PDAC, SLC6A14 (an amino acid transporter (AAT)) is up-regulated, affecting overall patient survival. Previously we have shown using in vitro cell culture models and in vivo xenograft mouse models that pharmacological inhibition of SLC6A14 with α-methyl-l-tryptophan (α-MLT) attenuates PDAC growth. Mechanistically, blockade of SLC6A14-mediated amino acid transport with α-MLT leads to amino acid deprivation, eventually inhibiting mTORC1 signaling pathway, in tumor cells. Here, we report on the effect of Slc6a14 deletion on various parameters of PDAC in KPC mice, a model for spontaneous PDAC. Pancreatic tumors in KPC mice show evidence of Slc6a14 up-regulation. Deletion of Slc6a14 in this mouse attenuates PDAC growth, decreases the metastatic spread of the tumor, reduces ascites fluid accumulation, and improves overall survival. At the molecular level, we show lower proliferation index and reduced desmoplastic reaction following Slc6a14 deletion. Furthermore, we find that deletion of Slc6a14 does not lead to compensatory up-regulation in any of the other amino transporters. In fact, some of the AATs are actually down-regulated in response to Slc6a14 deletion, most likely related to altered mTORC1 signaling. Taken together, these results underscore the positive role SLC6A14 plays in PDAC growth and metastasis. Therefore, SLC6A14 is a viable drug target for the treatment of PDAC and also for any other cancer that overexpresses this transporter.
Assuntos
Neoplasias Pancreáticas , Sistemas de Transporte de Aminoácidos , Aminoácidos , Animais , Modelos Animais de Doenças , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias PancreáticasRESUMO
The complement system is an important component of transplant rejection. Sertoli cells, an immune regulatory testicular cell, survive long-term when transplanted across immunological barriers; thus, understanding the mechanisms behind this unique survival would be of great benefit to the transplantation field. This study focused on Sertoli cell inhibition of complement as relevant in xenotransplantation. Neonatal pig Sertoli cells (NPSCs) survived activated human complement in vitro while neonatal pig islet (NPI) aggregates and pig aortic endothelial cell (PAEC) survival were diminished to about 65% and 12%, respectively. PAECs cultured in NPSC-conditioned media and human complement demonstrated a 200% increase in survival suggesting that NPSCs secrete complement-inhibiting substances that confer protection. Bioinformatic and molecular analyses identified 21 complement inhibitors expressed by NPSCs with several significantly increased in NPSCs compared to NPIs or PAECs. Lastly, RNA sequencing revealed that NPSCs express 25 other complement factors including cascade components and receptors. Overall, this study identified the most comprehensive Sertoli cell complement signature to date and indicates that the expression of a variety of complement inhibitors ensures a proper regulation of complement through redundant inhibition points. Understanding the regulation of the complement system should be further investigated for extending xenograft viability.
Assuntos
Proteínas do Sistema Complemento , Rejeição de Enxerto , Células de Sertoli , Humanos , Masculino , Inativadores do Complemento , Proteínas do Sistema Complemento/metabolismo , Rejeição de Enxerto/metabolismo , Xenoenxertos , Células de Sertoli/metabolismo , Transplante Heterólogo , Suínos , AnimaisRESUMO
PEPT1 is a proton-coupled peptide transporter that is up-regulated in PDAC cell lines and PDXs, with little expression in the normal pancreas. However, the relevance of this up-regulation to cancer progression and the mechanism of up-regulation have not been investigated. Herein, we show that PEPT1 is not just up-regulated in a large panel of PDAC cell lines and PDXs but is also functional and transport-competent. PEPT2, another proton-coupled peptide transporter, is also overexpressed in PDAC cell lines and PDXs, but is not functional due to its intracellular localization. Using glibenclamide as a pharmacological inhibitor of PEPT1, we demonstrate in cell lines in vitro and mouse xenografts in vivo that inhibition of PEPT1 reduces the proliferation of the cancer cells. These findings are supported by genetic knockdown of PEPT1 with shRNA, wherein the absence of the transporter significantly attenuates the growth of cancer cells, both in vitro and in vivo, suggesting that PEPT1 is critical for the survival of cancer cells. We also establish that the tumor-derived lactic acid (Warburg effect) in the tumor microenvironment supports the transport function of PEPT1 in the maintenance of amino acid nutrition in cancer cells by inducing MMPs and DPPIV to generate peptide substrates for PEPT1 and by generating a H+ gradient across the plasma membrane to energize PEPT1. Taken collectively, these studies demonstrate a functional link between PEPT1 and extracellular protein breakdown in the tumor microenvironment as a key determinant of pancreatic cancer growth, thus identifying PEPT1 as a potential therapeutic target for PDAC.
Assuntos
Neoplasias Pancreáticas/genética , Transportador 1 de Peptídeos/genética , Simportadores/genética , Microambiente Tumoral/genética , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glibureto/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Camundongos , Terapia de Alvo Molecular/métodos , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transportador 1 de Peptídeos/antagonistas & inibidores , Transportador 1 de Peptídeos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Simportadores/metabolismo , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias PancreáticasRESUMO
Pancreatic ductal adenocarcinoma (PDAC) cells have a great demand for nutrients in the form of sugars, amino acids, and lipids. Particularly, amino acids are critical for cancer growth and, as intermediates, connect glucose, lipid and nucleotide metabolism. PDAC cells meet these requirements by upregulating selective amino acid transporters. Here we show that SLC38A5 (SN2/SNAT5), a neutral amino acid transporter is highly upregulated and functional in PDAC cells. Using CRISPR/Cas9-mediated knockout of SLC38A5, we show its tumor promoting role in an in vitro cell line model as well as in a subcutaneous xenograft mouse model. Using metabolomics and RNA sequencing, we show significant reduction in many amino acid substrates of SLC38A5 as well as OXPHOS inactivation in response to SLC38A5 deletion. Experimental validation demonstrates inhibition of mTORC1, glycolysis and mitochondrial respiration in KO cells, suggesting a serious metabolic crisis associated with SLC38A5 deletion. Since many SLC38A5 substrates are activators of mTORC1 as well as TCA cycle intermediates/precursors, we speculate amino acid insufficiency as a possible link between SLC38A5 deletion and inactivation of mTORC1, glycolysis and mitochondrial respiration, and the underlying mechanism for PDAC attenuation. Overall, we show that SLC38A5 promotes PDAC, thereby identifying a novel, hitherto unknown, therapeutic target for PDAC.
Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Carcinógenos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Sistemas de Transporte de Aminoácidos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Aminoácidos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias PancreáticasRESUMO
Transplantation is a clinical procedure that treats a variety of diseases yet is unattainable for many patients due to a nationwide organ shortage and the harsh side effects of chronic immune suppression. Xenografted pig organs are an attractive alternative to traditional allografts and would provide an endless supply of transplantable tissue, but transplants risk rejection by the recipient's immune system. An essential component of the rejection immune response is the complement system. Sertoli cells, an immunoregulatory testicular cell, survive complement as xenografts long term without any immune suppressants. We hypothesized that exposure to the xenogeneic complement influences Sertoli cell gene expression of other accommodation factors that contribute to their survival; thus, the purpose of this study was to describe these potential changes in gene expression. RNA sequencing of baseline neonatal pig Sertoli cells (NPSC) as compared to NPSC after exposure to normal human serum (NHS, containing complement) revealed 62 significantly differentially expressed genes (DEG) that affect over 30 pathways involved in immune regulation, cell survival, and transplant accommodation. Twelve genes of interest were selected for further study, and Sertoli cell protein expression of CCL2 and the accommodation factor A20 were confirmed for the first time. Functional pathway analyses were conducted in NPSC and three biological clusters were revealed as being considerably affected by NHS exposure: innate immune signaling, cytokine signaling, and T cell regulation. Better understanding of the interaction of Sertoli cells with complement in a xenograft environment may reveal the mechanisms behind immune-privileged systems to increase graft viability.
RESUMO
The glutaminolysis and serine-glycine-one-carbon pathways represent metabolic reactions that are reprogramed and upregulated in cancer; these pathways are involved in supporting the growth and proliferation of cancer cells. Glutaminolysis participates in the production of lactate, an oncometabolite, and also in anabolic reactions leading to the synthesis of fatty acids and cholesterol. The serine-glycine-one-carbon pathway is involved in the synthesis of purines and pyrimidines and the control of the epigenetic signature (DNA methylation, histone methylation) in cancer cells. Methionine is obligatory for most of the methyl-transfer reactions in the form of S-adenosylmethionine; here, too, the serine-glycine-one-carbon pathway is necessary for the resynthesis of methionine following the methyl-transfer reaction. Glutamine, serine, glycine, and methionine are obligatory to fuel these metabolic pathways. The first three amino acids can be synthesized endogenously to some extent, but the need for these amino acids in cancer cells is so high that they also have to be acquired from extracellular sources. Methionine is an essential amino acid, thus making it necessary for cancer cells to acquire this amino acid solely from the extracellular milieu. Cancer cells upregulate specific amino acid transporters to meet this increased demand for these four amino acids. SLC6A14 and SLC38A5 are the two transporters that are upregulated in a variety of cancers to mediate the influx of glutamine, serine, glycine, and methionine into cancer cells. SLC6A14 is a Na+/Cl- -coupled transporter for multiple amino acids, including these four amino acids. In contrast, SLC38A5 is a Na+-coupled transporter with rather restricted specificity towards glutamine, serine, glycine, and methionine. Both transporters exhibit unique functional features that are ideal for the rapid proliferation of cancer cells. As such, these two amino acid transporters play a critical role in promoting the survival and growth of cancer cells and hence represent novel, hitherto largely unexplored, targets for cancer therapy.