Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chaos ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629790

RESUMO

The heart beats are due to the synchronized contraction of cardiomyocytes triggered by a periodic sequence of electrical signals called action potentials, which originate in the sinoatrial node and spread through the heart's electrical system. A large body of work is devoted to modeling the propagation of the action potential and to reproducing reliably its shape and duration. Connection of computational modeling of cells to macroscopic phenomenological curves such as the electrocardiogram has been also intense, due to its clinical importance in analyzing cardiovascular diseases. In this work, we simulate the dynamics of action potential propagation using the three-variable Fenton-Karma model that can account for both normal and damaged cells through a the spatially inhomogeneous voltage diffusion coefficient. We monitor the action potential propagation in the cardiac tissue and calculate the pseudo-electrocardiogram that reproduces the R and T waves. The R-wave amplitude varies according to a double exponential law as a function of the (spatially homogeneous, for an isotropic tissue) diffusion coefficient. The addition of spatial inhomogeneity in the diffusion coefficient by means of a defected region representing damaged cardiac cells may result in T-wave inversion in the calculated pseudo-electrocardiogram. The transition from positive to negative polarity of the T-wave is analyzed as a function of the length and the depth of the defected region.


Assuntos
Arritmias Cardíacas , Modelos Cardiovasculares , Humanos , Eletrocardiografia , Potenciais de Ação/fisiologia , Miócitos Cardíacos
2.
Sci Rep ; 14(1): 13005, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844614

RESUMO

The dynamics of nonlinear ion-acoustic solitary waves in the presence of kinetic (Landau type) damping have been investigated in a collisionless, non-magnetized electron-ion plasma. A cold ion fluid model, coupled to a Vlasov-type kinetic equation for the electron dynamics, has been adopted as a starting point. The electron population was assumed to be in a kappa-distributed state, in account of the non-Maxwellian behavior of energetic (suprathermal) electrons often observed in Space. A multiscale perturbation technique has led to an evolution equation for the electrostatic potential, in the form of a modified Korteweg-de Vries (KdV) equation, incorporating a non-local term accounting for Landau damping (associated with the electron statistics). Exact analytical solutions have been obtained, representing solitary waves undergoing amplitude decay over time. The combined effect of Landau damping and non-Maxwellian electron statistics (via the kappa parameter) on the characteristics of IASWs has been examined. Numerical integration of the evolution equation has been undertaken, to elucidate the importance of kinetic Landau damping on a shock-shaped initial condition. The results of this investigation aim to improve our understanding of the dynamics of nonlinear electrostatic waves under the influence of Landau damping in various space plasma environments.

3.
Sci Rep ; 14(1): 2150, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272962

RESUMO

An asymmetric pair of coupled nonlinear Schrödinger (CNLS) equations has been derived through a multiscale perturbation method applied to a plasma fluid model, in which two wavepackets of distinct (carrier) wavenumbers ([Formula: see text] and [Formula: see text]) and amplitudes ([Formula: see text] and [Formula: see text]) are allowed to co-propagate and interact. The original fluid model was set up for a non-magnetized plasma consisting of cold inertial ions evolving against a [Formula: see text]-distributed electron background in one dimension. The reduction procedure resulting in the CNLS equations has provided analytical expressions for the dispersion, self-modulation and cross-coupling coefficients in terms of the two carrier wavenumbers. These coefficients present no symmetry whatsoever, in the general case (of different wavenumbers). The possibility for coupled envelope (vector soliton) solutions to occur has been investigated. Although the CNLS equations are asymmetric and non-integrable, in principle, the system admits various types of vector soliton solutions, physically representing nonlinear, localized electrostatic plasma modes, whose areas of existence is calculated on the wavenumbers' parameter plane. The possibility for either bright (B) or dark (D) type excitations for either of the (2) waves provides four (4) combinations for the envelope pair (BB, BD, DB, DD), if a set of explicit criteria is satisfied. Moreover, the soliton parameters (maximum amplitude, width) are also calculated for each type of vector soliton solution, in its respective area of existence. The dependence of the vector soliton characteristics on the (two) carrier wavenumbers and on the spectral index [Formula: see text] characterizing the electron distribution has been explored. In certain cases, the (envelope) amplitude of one component may exceed its counterpart (second amplitude) by a factor 2.5 or higher, indicating that extremely asymmetric waves may be formed due to modulational interactions among copropagating wavepackets. As [Formula: see text] decreases from large values, modulational instability occurs in larger areas of the parameter plane(s) and with higher growth rates. The distribution of different types of vector solitons on the parameter plane(s) also varies significantly with decreasing [Formula: see text], and in fact dramatically for [Formula: see text] between 3 and 2. Deviation from the Maxwell-Boltzmann picture therefore seems to favor modulational instability as a precursor to the formation of bright (predominantly) type envelope excitations and freak waves.

4.
Sci Rep ; 12(1): 18204, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307517

RESUMO

Electrostatic solitary waves (ESWs) have been detected in abundance in Space plasma observations, both by satellites in near-Earth plasma environments as well as by planetary missions, e.g. Cassini in Saturn or MAVEN in Mars. In their usual form, these are manifested as a bipolar electric field corresponding to a bell-shaped pulse in the electrostatic potential. Recent studies have suggested the existence of alternative forms of ESWs, including flat-top solitary waves (FTSWs) and supersolitary waves (SSWs), both of which are often encountered in Space observations such as in polar cap boundary layer, the auroral acceleration region and elsewhere. This article focuses on the existence and characterization of different types of electrostatic solitary waves in multicomponent Space plasmas. Relying on a multi-fluid plasma model, comprising two types of ions and two different electron populations, we have identified the conditions for existence of flat-top solitary waves and supersolitons, in contrast to "standard" solitary waves. Both ion species are models as cold fluids, for simplicity. Our analysis reveals that the coexistence of the two electron populations is pivotal for the formation of such non-standard electrostatic structures, and that their characteristic parameters (temperature, density ratio) plays a decisive role in their generation and structural characteristics. Nonetheless, while supersolitary waves may exist in a wide range of parameter values (as confirmed by earlier theoretical studies), it appears that flat-top solitary waves will occur in a narrow window in the parameter region, which may explain their scarce (but non-negligible) frequency of observation. Our theoretical findings confirm and validate the existence of alternative (non-conventional) ESW waveforms in auroral plasma (in addition to the ubiquitous bipolar electric field form), where such an electron coexistence is typically observed.

5.
Sci Rep ; 11(1): 16358, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381089

RESUMO

Electron holes (EH) are localized modes in plasma kinetic theory which appear as vortices in phase space. Earlier research on EH is based on the Schamel distribution function (df). A novel df is proposed here, generalizing the original Schamel df in a recursive manner. Nonlinear solutions obtained by kinetic simulations are presented, with velocities twice the electron thermal speed. Using 1D-1V kinetic simulations, their propagation characteristics are traced and their stability is established by studying their long-time evolution and their behavior through mutual collisions.

7.
Artigo em Inglês | MEDLINE | ID: mdl-25314552

RESUMO

A self-consistent relativistic two-fluid model is proposed for electron-ion plasma dynamics. A one-dimensional geometry is adopted. Electrons are treated as a relativistically degenerate fluid, governed by an appropriate equation of state. The ion fluid is also allowed to be relativistic, but is cold, nondegenerate, and subject only to an electrostatic potential. Exact stationary-profile solutions are sought, at the ionic scale, via the Sagdeev pseudopotential method. The analysis provides the pulse existence region, in terms of characteristic relativistic parameters, associated with the (ultrahigh) particle density.


Assuntos
Elétrons , Gases em Plasma/química , Eletricidade Estática , Hidrodinâmica , Modelos Lineares
8.
Artigo em Inglês | MEDLINE | ID: mdl-23679530

RESUMO

Supersolitons are a recent addition to the literature on large-amplitude solitary waves in multispecies plasmas. They are distinguished from the usual solitons by their associated electric field profiles which are inherently distinct from traditional bipolar structures. In this paper, dust-ion-acoustic modes in a dusty plasma with stationary negative dust, cold fluid protons, and nonthermal electrons are investigated through a Sagdeev pseudopotential approach to see where supersolitons fit between ranges of ordinary solitons and double layers, as supersolitons always have finite amplitudes. They therefore cannot be described by reductive perturbation treatments, which rely on a weak amplitude assumption. A systematic methodology and discussion is given to distinguish the existence domains in solitary wave speed and amplitude for the different solitons, supersolitons and double layers, in terms of compositional parameters for the plasma model under consideration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA