RESUMO
The aim of this work was to develop a novel method for the preparation of structured Co-Mn mixed oxide catalysts: deposition on stainless steel meshes by hydrothermal synthesis. The use of meshes enabled the deposition of a thin layer of the active phase, which significantly suppressed the influence of internal diffusion. Consequently, the prepared catalysts exhibited from 48 to 114 times higher catalytic activity in ethanol oxidation than the commercial pelleted Co-Mn-Al catalyst. Moreover, we have shown that their catalytic activity correlated with the proportion of surface oxygen vacancies determined by XPS. Finally, the outstanding activity of the catalyst with Co:Mn ratio of 0.5 was ascribed to the mutual effect of high number of oxygen vacancies and exceptional redox properties.
Assuntos
Óxidos , Compostos Orgânicos Voláteis , Catálise , Oxirredução , Aço InoxidávelRESUMO
Magnetron sputtering was employed for the deposition of cobalt oxide thin films on stainless steel meshes. Catalysts prepared by sputtering in inert and oxidation atmosphere were compared with those obtained by electrochemical deposition and hydrothermal synthesis. Systematic characterization using X-ray diffraction, scanning electron microscopy, N2 physisorption, infrared spectroscopy, Raman spectroscopy, and temperature-programmed reduction by hydrogen allowed detailed monitoring of their physicochemical properties. Ethanol gas-phase oxidation was employed as a model reaction to reveal the catalytic performance of the catalysts. It was shown that the catalyst prepared by magnetron sputtering in oxidation atmosphere exhibited the best mechanical stability among all studied catalysts. Moreover, its catalytic activity was 18 times higher than that of pelletized commercial cobalt oxide.
Assuntos
Cobalto , Óxidos , Compostos Orgânicos Voláteis , CatáliseRESUMO
Nanosized porphyrin-containing metal-organic frameworks (MOFs) attract considerable attention as solid-state photosensitizers for biological applications. In this study, we have for the first time synthesised and characterised phosphinate-based MOF nanoparticles, nanoICR-2 (Inorganic Chemistry Rez). We demonstrate that nanoICR-2 can be decorated with anionic 5,10,15,20-tetrakis(4-R-phosphinatophenyl)porphyrins (R = methyl, isopropyl, phenyl) by utilizing unsaturated metal sites on the nanoparticle surface. The use of these porphyrins allows for superior loading of the nanoparticles when compared with commonly used 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin. The nanoICR-2/porphyrin composites retain part of the free porphyrins photophysical properties, while the photodynamic efficacy is strongly affected by the R substituent at the porphyrin phosphinate groups. Thus, phosphinatophenylporphyrin with phenyl substituents has the strongest photodynamic efficacy due to the most efficient cellular uptake.
RESUMO
Molecular modeling in combination with powder X-ray diffraction (XRD) provided new information on the organization of the interlayer space of Mg-Al layered double hydroxide (LDH) containing intercalated porphyrin anions [5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS)]. Anion-exchange and rehydration procedures were used for the preparation of TPPS-containing LDH with an Mg/Al molar ratio of 2. Molecular modeling was carried out in the Cerius(2) and Materials Studio modeling environment. Three types of models were created in order to simulate the experimental XRD patterns of LDH intercalates with a TPPS loading of 70-80% with respect to the theoretical anion exchange capacity (AEC). The models represent single-phase systems with a 100% TPPS loading in the interlayer space (Type 1) and models represent the coexistence of two phases corresponding to the total exchange from 75 to 92% (Type 2). To cover other possible arrangements, models with the coexistence of both TPPS and NO(3)(-) anions in the same interlayer space were calculated (Type 3). The models are described and compared with experimental data. In all cases, guest TPPS anions are tilted with respect to the hydroxide layers, and are horizontally shifted to each other by up to one-half of the TPPS diameter. According to the energy characteristics and simulated XRD, the most probable arrangement is of Type 2, where some layers are saturated with TPPS anions and others are filled with original NO(3)(-) anions.