Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203578

RESUMO

This work demonstrates the use of a modified mica to concentrate proteins, which is required for proteomic profiling of blood plasma by mass spectrometry (MS). The surface of mica substrates, which are routinely used in atomic force microscopy (AFM), was modified with a photocrosslinker to allow "irreversible" binding of proteins via covalent bond formation. This modified substrate was called the AFM chip. This study aimed to determine the role of the surface and crosslinker in the efficient concentration of various types of proteins in plasma over a wide concentration range. The substrate surface was modified with a 4-benzoylbenzoic acid N-succinimidyl ester (SuccBB) photocrosslinker, activated by UV irradiation. AFM chips were incubated with plasma samples from a healthy volunteer at various dilution ratios (102X, 104X, and 106X). Control experiments were performed without UV irradiation to evaluate the contribution of physical protein adsorption to the concentration efficiency. AFM imaging confirmed the presence of protein layers on the chip surface after incubation with the samples. MS analysis of different samples indicated that the proteomic profile of the AFM-visualized layers contained common and unique proteins. In the working series of experiments, 228 proteins were identified on the chip surface for all samples, and 21 proteins were not identified in the control series. In the control series, a total of 220 proteins were identified on the chip surface, seven of which were not found in the working series. In plasma samples at various dilution ratios, a total of 146 proteins were identified without the concentration step, while 17 proteins were not detected in the series using AFM chips. The introduction of a concentration step using AFM chips allowed us to identify more proteins than in plasma samples without this step. We found that AFM chips with a modified surface facilitate the efficient concentration of proteins owing to the adsorption factor and the formation of covalent bonds between the proteins and the chip surface. The results of our study can be applied in the development of highly sensitive analytical systems for determining the complete composition of the plasma proteome.


Assuntos
Proteínas Sanguíneas , Proteômica , Humanos , Silicatos de Alumínio , Espectrometria de Massas
2.
J Allergy Clin Immunol Glob ; 3(3): 100251, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38706460

RESUMO

A patient presented with overlapping clinical and laboratory features of 2 rare autoinflammatory diseases, NLRP1-associated autoinflammation with arthritis and dyskeratosis and familial multiple self-healing palmoplantar carcinoma. Her severe inflammatory attack was treated with the IL-1 receptor-α inhibitor anakinra along with the Janus kinase inhibitor ruxolitinib. Three years into the treatment, the patient's inflammatory symptoms are completely in remission.

3.
Arthritis Rheumatol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965708

RESUMO

OBJECTIVE: Autoinflammation and phospholipase C (PLC) γ2-associated antibody deficiency and immune dysregulation (APLAID) syndrome is an autoinflammatory disease caused by gain-of-function variants in PLCG2. This study investigates the pathogenic mechanism of a novel variant of PLCG2 in a patient with APLAID syndrome. METHODS: Whole-exome sequencing and Sanger sequencing were used to identify the pathogenic variant in the patient. Single-cell RNA sequencing, immunoblotting, luciferase assay, inositol monophosphate enzyme-linked immunosorbent assay, calcium flux assay, quantitative PCR, and immunoprecipitation were used to define inflammatory signatures and evaluate the effects of the PLCG2 variant on protein functionality and immune signaling. RESULTS: We identified a novel de novo variant, PLCG2 p.D993Y, in a patient with colitis, pansinusitis, skin rash, edema, recurrent respiratory infections, B-cell deficiencies, and hypogammaglobulinemia. The single-cell transcriptome revealed exacerbated inflammatory responses in the patient's peripheral blood mononuclear cells. Expression of the D993Y variant in HEK293T, COS-7, and PLCG2 knock-out THP-1 cell lines showed heightened PLCγ2 phosphorylation; elevated inositol-1,4,5-trisphosphate production and intracellular Ca2+ release; and activation of the MAPK, NF-κB, and NFAT signaling pathways compared with control-transfected cells. In vitro experiments indicated that the D993Y variant altered amino acid properties, disrupting the interaction between the catalytic and autoinhibitory domains of PLCγ2, resulting in PLCγ2 autoactivation. CONCLUSION: Our findings demonstrated that the PLCG2 D993Y variant is a gain-of-function mutation via impairing its autoinhibition, activating multiple inflammatory signaling pathways, thus leading to APLAID syndrome. This study further broadens the molecular underpinnings and phenotypic spectrum of PLCγ2-related disorders.

4.
ACS Chem Neurosci ; 15(10): 2006-2017, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38683969

RESUMO

Potently affecting human and animal brain and behavior, hallucinogenic drugs have recently emerged as potentially promising agents in psychopharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful model organism for screening neuroactive drugs, including hallucinogens. Here, we tested four novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -F, -Cl, and -OCF3 substitutions in the ortho position of the phenyl ring of the N-benzyl moiety (34H-NBF, 34H-NBCl, 24H-NBOMe(F), and 34H-NBOMe(F)), assessing their behavioral and neurochemical effects following chronic 14 day treatment in adult zebrafish. While the novel tank test behavioral data indicate anxiolytic-like effects of 24H-NBOMe(F) and 34H-NBOMe(F), neurochemical analyses reveal reduced brain norepinephrine by all four drugs, and (except 34H-NBCl) - reduced dopamine and serotonin levels. We also found reduced turnover rates for all three brain monoamines but unaltered levels of their respective metabolites. Collectively, these findings further our understanding of complex central behavioral and neurochemical effects of chronically administered novel NBPEAs and highlight the potential of zebrafish as a model for preclinical screening of small psychoactive molecules.


Assuntos
Comportamento Animal , Fenetilaminas , Peixe-Zebra , Animais , Fenetilaminas/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Masculino , Alucinógenos/farmacologia , Psicotrópicos/farmacologia , Serotonina/metabolismo , Dopamina/metabolismo
5.
Biomedicines ; 12(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38255156

RESUMO

Problems with the male reproductive system are of both medical and social significance. As a rule, spermatozoa and seminal plasma proteomes are investigated separately to assess sperm quality. The current study aimed to compare ejaculate proteomes with spermatozoa and seminal plasma protein profiles regarding the identification of proteins related to fertility scores. A total of 1779, 715, and 2163 proteins were identified in the ejaculate, seminal plasma, and spermatozoa, respectively. Among these datasets, 472 proteins were shared. GO enrichment analysis of the common proteins enabled us to distinguish biological processes such as single fertilization (GO:0007338), spermatid development (GO:0007286), and cell motility (GO:0048870). Among the abundant terms for GO cellular components, zona pellucida receptor complex, sperm fibrous sheath, and outer dense fiber were revealed. Overall, we identified 139 testis-specific proteins. For these proteins, PPI networks that are common in ejaculate, spermatozoa, and seminal plasma were related to the following GO biological processes: cilium movement (GO:0003341), microtubule-based movement (GO:0007018), and sperm motility (GO:0097722). For ejaculate and spermatozoa, they shared 15 common testis-specific proteins with spermatogenesis (GO:0007283) and male gamete generation (GO:0048232). Therefore, we speculated that ejaculate-based proteomics could yield new insights into the peculiar reproductive physiology and spermatozoa function of men and potentially serve as an explanation for male infertility screening.

6.
Biology (Basel) ; 12(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38132320

RESUMO

The long-read RNA sequencing developed by Oxford Nanopore Technologies provides a direct quantification of transcript isoforms, thereby making it possible to present alternative splicing (AS) profiles as arrays of single splice variants with different abundances. Additionally, AS profiles can be presented as arrays of genes characterized by the degree of alternative splicing (the DAS-the number of detected splice variants per gene). Here, we successfully utilized the DAS to reveal biological pathways influenced by the alterations in AS in human liver tissue and the hepatocyte-derived malignant cell lines HepG2 and Huh7, thus employing the mathematical algorithm of gene set enrichment analysis. Furthermore, analysis of the AS profiles as abundances of single splice variants by using the graded tissue specificity index τ provided the selection of the groups of genes expressing particular splice variants specifically in liver tissue, HepG2 cells, and Huh7 cells. The majority of these splice variants were translated into proteins products and appeal to be in focus regarding further insights into the mechanisms underlying cell malignization. The used metrics are intrinsically suitable for transcriptome-wide AS profiling using long-read sequencing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA