RESUMO
BACKGROUND: Renal cell carcinoma (RCC) is considered resistant to ionizing radiation. Recently, the extracellular matrix (ECM) has been shown to play a role in both drug resistance and radiation resistance (RR). While fibronectin has been extensively investigated in the context of RR, the role of type I collagen [col(I)], a principal constituent of the ECM in tumour metastases, in RR of RCC is unknown. METHODS: RCC cell adhesion to matrix was studied via pre-coating a variety of ECM glycoproteins onto plates. Cancer cell apoptosis and cell cycle were evaluated with flow cytometry using annexin V and propidium iodide stains, respectively. Activation of cellular survival signalling was analysed with western blots, and specific molecular inhibitors were correspondingly employed to block signalling. Hypoxia (<1%) was induced via N(2)/CO(2) gas flow in a specialized chamber. RESULTS: While adherence to col(I) enhanced RCC cell proliferation in general, col(I) and fibronectin, but not fibrinogen, could confer specific anti-apoptotic RR to RCC cells. The radioprotective effect of col(I) was maintained during both hypoxia/reoxygenation and normoxia conditions. In contrast to intact col(I), micronized col(I), lacking the natural fibrillar structure, was not radioprotective. The effect of col(I) in RCC cells is mediated via attenuation of apoptosis rather than cell cycle redistribution, involving the PI3 kinase/Akt pathway but not the MAP kinase pathway. CONCLUSIONS: Adherence to col(I) appears to be a relevant environmental cue enhancing RR in RCC cells, Akt dependently. Our results support inhibition of the PI3-kinase/Akt pathway as a radiosensitizing approach.
Assuntos
Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/radioterapia , Neoplasias Renais/patologia , Neoplasias Renais/radioterapia , Proteína Oncogênica v-akt/fisiologia , Adesão Celular , Colágeno Tipo I , Humanos , Falha de Tratamento , Células Tumorais Cultivadas/efeitos da radiaçãoRESUMO
BACKGROUND: Systemic adenoviral (Ad) vector administration is associated with thrombocytopenia. Recently, Ad interaction with mouse platelets emerged as a key player determining liver uptake and platelet clearance. However, whether Ad can activate platelets is controversial. Thus, in vitro analysis of Ad attachment to platelets is of interest. METHODS: We developed a direct flow cytometry assay to specifically detect Ad particles adherent to human platelets. The method was pre-validated in nucleated cells. Blocking assays were employed to specifically inhibit Ad attachment to platelets. Platelet activation was analyzed using annexin v flow cytometry. RESULTS: We found in vitro that Ad binding to human platelets is synergistically enhanced by the combination of platelet activation by thrombin and MnCl2 supplementation. Of note, Ad binding could activate human platelets. Platelets bound Ad displaying an RGD ligand in the fiber knob more efficiently than unmodified Ad. In contrast to a previous report, CAR expression was not detected on human platelets. Integrins appear to mediate Ad binding to platelets, at least partially. Finally, alphaIIbbeta3-deficient platelets from a patient with Glanzmann thrombasthenia could bind Ad 5-fold more efficiently than normal platelets. CONCLUSION: The flow cytometry methodology developed herein allows the quantitative measurement of Ad attachment to platelets and may provide a useful in vitro approach to investigate Ad interaction with platelets.
Assuntos
Adenoviridae/fisiologia , Plaquetas/virologia , Ligação Viral , Adenoviridae/metabolismo , Plaquetas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Integrinas/metabolismo , Trombastenia/fisiopatologiaRESUMO
BACKGROUND: In epithelial and endothelial cells, detachment from the matrix results in anoikis, a form of apoptosis, whereas stromal and cancer cells are often anchorage independent. The classical anoikis model is based on static 3D epithelial cell culture conditions (STCK). METHODS: We characterized a new model of renal, stromal and mesenchymal stem cell (MSC) matrix deprivation, based on slow rotation cell culture conditions (ROCK). This model induces anoikis using a low shear stress, laminar flow. The mechanism of cell death was determined via FACS (fluorescence-activated cell sorting) analysis for annexin V and propidium iodide uptake and via DNA laddering. RESULTS: While only renal epithelial cells progressively died in STCK, the ROCK model could induce apoptosis in stromal and transformed cells; cell survival decreased in ROCK versus STCK to 40%, 52%, 62% and 7% in human fibroblast, rat MSC, renal cell carcinoma (RCC) and human melanoma cell lines, respectively. Furthermore, while ROCK induced primarily apoptosis in renal epithelial cells, necrosis was more prevalent in transformed and cancer cells [necrosis/apoptosis ratio of 72.7% in CaKi-1 RCC cells versus 4.3% in MDCK (Madin-Darby canine kidney) cells]. The ROCK-mediated shift to necrosis in RCC cells was further accentuated 3.4-fold by H(2)O(2)-mediated oxidative stress while in adherent HK-2 renal epithelial cells, oxidative stress enhanced apoptosis. ROCK conditions could also unveil a similar pattern in the LZ100 rat MSC line where in ROCK 44% less apoptosis was observed versus STCK and 45% less apoptosis versus monolayer conditions. Apoptosis in response to oxidative stress was also attenuated in the rat MSC line in ROCK, thereby highlighting rat MSC transformation. CONCLUSIONS: The ROCK matrix-deficiency cell culture model may provide a valuable insight into the mechanism of renal and MSC cell death in response to matrix deprivation.
Assuntos
Apoptose/fisiologia , Células Mesangiais/citologia , Células-Tronco Mesenquimais/citologia , Estresse Oxidativo/fisiologia , Animais , Anoikis/fisiologia , Carcinoma de Células Renais/patologia , Morte Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Células Cultivadas , Cães , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Matriz Extracelular , Imunofluorescência , Humanos , Melanoma/patologia , Células Mesangiais/fisiologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Modelos Teóricos , Probabilidade , Ratos , Espécies Reativas de Oxigênio/análise , Sensibilidade e Especificidade , Estresse MecânicoRESUMO
Anchorage-independence is a hallmark of invasive cancer. The setback of the classical poly-HEMA static matrix detachment (SMD) anoikis model is the absence of dynamic fluid circulation, resulting in cell aggregates. We addressed this problem by developing a novel 3D cell culture dynamic matrix detachment (DMD) model with a turbulent-free laminar flow, yielding a very low shear stress. In this study, we focused on melanoma cells where apoptosis was evaluated both via annexin V flow cytometry and caspase cleavage. The DMD model was superior to SMD in the induction of melanoma cell death and in revealing a shift from apoptosis to necrotic cell death, as evident by failure to activate caspase 9 and a decrease in annexin V stain. Combination of DMD with cisplatin could further accentuate necrotic cell death in cisplatin-resistant melanoma cells. Thus, the DMD model may be a useful matrix deprivation model to identify necrotic vs. apoptotic cell death pathways.
Assuntos
Apoptose , Melanoma Experimental/patologia , Modelos Biológicos , Necrose , Animais , Western Blotting , Linhagem Celular Tumoral , Citometria de Fluxo , CamundongosRESUMO
OBJECTIVES: Viral vector uptake into the pancreas is rare. The few viral vectors reported to transduce in vivo pancreatic islets after systemic injection required additional physical measures, such as direct pancreatic injection or hepatic vessel clamping. Because pancreatic islet uptake of the human polyomavirus family member BK virus was previously reported in hamsters after systemic administration, we hypothesized that SV40, a polyomavirus member remarkably similar to BK virus, may also infect the pancreas. METHODS: We injected intravenously a low dose of SV40, unaided by any other physical or chemical means, and evaluated viral uptake by pancreatic islets and pancreatic exocrine tissue via polymerase chain reaction, Western blot, electron microscopy, immunofluorescent microscopy, and protein A-gold immunocytochemistry. RESULTS: Pancreatic uptake of SV40 was comparable to other major organs (ie, liver and spleen). SV40 viral particles were detected in both pancreatic islets and acini. In pancreatic islets, all islet cell types were infected by SV40, albeit the infection rate of glucagon-producing alpha cells surpassed beta- and delta-islet cells. Low-dose SV40 administration was not sufficient to induce heterologous gene expression in the pancreas. CONCLUSIONS: Our study shows that pancreatic islet and acinar cell uptake of SV40 is feasible with a single, low-dose intravenous injection. However, this dose did not result in gene delivery into the murine pancreas.