Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.286
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 36(10): 3944-3973, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701340

RESUMO

Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase carbon dioxide (CO2) concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.


Assuntos
Dióxido de Carbono , Produtos Agrícolas , Fotossíntese , Fotossíntese/fisiologia , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Produção Agrícola/métodos , Transporte de Elétrons , Nitrogênio/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(42): e2411620121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39378097

RESUMO

Zeaxanthin (Zea) is a key component in the energy-dependent, rapidly reversible, nonphotochemical quenching process (qE) that regulates photosynthetic light harvesting. Previous transient absorption (TA) studies suggested that Zea can participate in direct quenching via chlorophyll (Chl) to Zea energy transfer. However, the contamination of intrinsic exciton-exciton annihilation (EEA) makes the assignment of TA signal ambiguous. In this study, we present EEA-free TA data using Nicotiana benthamiana thylakoid membranes, including the wild type and three NPQ mutants (npq1, npq4, and lut2) generated by CRISPR/Cas9 mutagenesis. The results show a strong correlation between excitation energy transfer from excited Chl Qy to Zea S1 and the xanthophyll cycle during qE activation. Notably, a Lut S1 signal is absent in the npq1 thylakoids which lack zeaxanthin. Additionally, the fifth-order response analysis shows a reduction in the exciton diffusion length (LD) from 62 ± 6 nm to 43 ± 3 nm under high light illumination, consistent with the reduced range of exciton motion being a key aspect of plants' response to excess light.


Assuntos
Clorofila , Transferência de Energia , Nicotiana , Fotossíntese , Tilacoides , Zeaxantinas , Zeaxantinas/metabolismo , Clorofila/metabolismo , Nicotiana/metabolismo , Tilacoides/metabolismo , Xantofilas/metabolismo , Mutação
3.
Proc Natl Acad Sci U S A ; 120(25): e2214119120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307488

RESUMO

Life on earth depends on photosynthetic primary producers that exploit sunlight to fix CO2 into biomass. Approximately half of global primary production is associated with microalgae living in aquatic environments. Microalgae also represent a promising source of biomass to complement crop cultivation, and they could contribute to the development of a more sustainable bioeconomy. Photosynthetic organisms evolved multiple mechanisms involved in the regulation of photosynthesis to respond to highly variable environmental conditions. While essential to avoid photodamage, regulation of photosynthesis results in dissipation of absorbed light energy, generating a complex trade-off between protection from stress and light-use efficiency. This work investigates the impact of the xanthophyll cycle, the light-induced reversible conversion of violaxanthin into zeaxanthin, on the protection from excess light and on biomass productivity in the marine microalgae of the genus Nannochloropsis. Zeaxanthin is shown to have an essential role in protection from excess light, contributing to the induction of nonphotochemical quenching and scavenging of reactive oxygen species. On the contrary, the overexpression of zeaxanthin epoxidase enables a faster reconversion of zeaxanthin to violaxanthin that is shown to be advantageous for biomass productivity in dense cultures in photobioreactors. These results demonstrate that zeaxanthin accumulation is critical to respond to strong illumination, but it may lead to unnecessary energy losses in light-limiting conditions and accelerating its reconversion to violaxanthin provides an advantage for biomass productivity in microalgae.


Assuntos
Microalgas , Biomassa , Zeaxantinas , Xantofilas
4.
Proc Natl Acad Sci U S A ; 120(33): e2306338120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549282

RESUMO

NADPH-dependent thioredoxin reductase C (NTRC) is a chloroplast redox regulator in algae and plants. Here, we used site-specific mutation analyses of the thioredoxin domain active site of NTRC in the green alga Chlamydomonas reinhardtii to show that NTRC mediates cold tolerance in a redox-dependent manner. By means of coimmunoprecipitation and mass spectrometry, a redox- and cold-dependent binding of the Calvin-Benson Cycle Protein 12 (CP12) to NTRC was identified. NTRC was subsequently demonstrated to directly reduce CP12 of C. reinhardtii as well as that of the vascular plant Arabidopsis thaliana in vitro. As a scaffold protein, CP12 joins the Calvin-Benson cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to form an autoinhibitory supracomplex. Using size-exclusion chromatography, NTRC from both organisms was shown to control the integrity of this complex in vitro and thereby PRK and GAPDH activities in the cold. Thus, NTRC apparently reduces CP12, hence triggering the dissociation of the PRK/CP12/GAPDH complex in the cold. Like the ntrc::aphVIII mutant, CRISPR-based cp12::emx1 mutants also exhibited a redox-dependent cold phenotype. In addition, CP12 deletion resulted in robust decreases in both PRK and GAPDH protein levels implying a protein protection effect of CP12. Both CP12 functions are critical for preparing a repertoire of enzymes for rapid activation in response to environmental changes. This provides a crucial mechanism for cold acclimation.


Assuntos
Chlamydomonas reinhardtii , Fotossíntese , Tiorredoxina Dissulfeto Redutase , Aclimatação , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Oxirredução , Fotossíntese/fisiologia , Tiorredoxina Dissulfeto Redutase/metabolismo
5.
Plant Physiol ; 194(3): 1383-1396, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37972281

RESUMO

Photosynthetic organisms harvest light using pigment-protein complexes. In cyanobacteria, these are water-soluble antennae known as phycobilisomes (PBSs). The light absorbed by PBS is transferred to the photosystems in the thylakoid membrane to drive photosynthesis. The energy transfer between these complexes implies that protein-protein interactions allow the association of PBS with the photosystems. However, the specific proteins involved in the interaction of PBS with the photosystems are not fully characterized. Here, we show in Synechocystis sp. PCC 6803 that the recently discovered PBS linker protein ApcG (sll1873) interacts specifically with PSII through its N-terminal region. Growth of cyanobacteria is impaired in apcG deletion strains under light-limiting conditions. Furthermore, complementation of these strains using a phospho-mimicking version of ApcG causes reduced growth under normal growth conditions. Interestingly, the interaction of ApcG with PSII is affected when a phospho-mimicking version of ApcG is used, targeting the positively charged residues interacting with the thylakoid membrane, suggesting a regulatory role mediated by phosphorylation of ApcG. Low-temperature fluorescence measurements showed decreased PSI fluorescence in apcG deletion and complementation strains. The PSI fluorescence was the lowest in the phospho-mimicking complementation strain, while the pull-down experiment showed no interaction of ApcG with PSI under any tested condition. Our results highlight the importance of ApcG for selectively directing energy harvested by the PBS and imply that the phosphorylation status of ApcG plays a role in regulating energy transfer from PSII to PSI.


Assuntos
Synechocystis , Synechocystis/metabolismo , Ficobilissomas/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Transferência de Energia/fisiologia
6.
Mol Ther ; 32(5): 1497-1509, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429928

RESUMO

The hallmark of epidermolysis bullosa (EB) is fragile attachment of epithelia due to genetic variants in cell adhesion genes. We describe 16 EB patients treated in the ear, nose, and throat department of a tertiary pediatric hospital linked to the United Kingdom's national EB unit between 1992 and 2023. Patients suffered a high degree of morbidity and mortality from laryngotracheal stenosis. Variants in laminin subunit alpha-3 (LAMA3) were found in 10/15 patients where genotype was available. LAMA3 encodes a subunit of the laminin-332 heterotrimeric extracellular matrix protein complex and is expressed by airway epithelial basal stem cells. We investigated the benefit of restoring wild-type LAMA3 expression in primary EB patient-derived basal cell cultures. EB basal cells demonstrated weak adhesion to cell culture substrates, but could otherwise be expanded similarly to non-EB basal cells. In vitro lentiviral overexpression of LAMA3A in EB basal cells enabled them to differentiate in air-liquid interface cultures, producing cilia with normal ciliary beat frequency. Moreover, transduction restored cell adhesion to levels comparable to a non-EB donor culture. These data provide proof of concept for a combined cell and gene therapy approach to treat airway disease in LAMA3-affected EB.


Assuntos
Adesão Celular , Epidermólise Bolhosa , Laminina , Lentivirus , Humanos , Laminina/metabolismo , Laminina/genética , Epidermólise Bolhosa/genética , Epidermólise Bolhosa/metabolismo , Epidermólise Bolhosa/terapia , Epidermólise Bolhosa/patologia , Criança , Lentivirus/genética , Masculino , Feminino , Pré-Escolar , Terapia Genética/métodos , Vetores Genéticos/genética , Células Epiteliais/metabolismo , Células Cultivadas , Expressão Gênica , Adolescente , Lactente
7.
Proc Natl Acad Sci U S A ; 119(32): e2203883119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914168

RESUMO

L-type CaV1.3 calcium channels are expressed on the dendrites and soma of neurons, and there is a paucity of information about its role in hippocampal plasticity. Here, by genetic targeting to ablate CaV1.3 RNA editing, we demonstrate that unedited CaV1.3ΔECS mice exhibited improved learning and enhanced long-term memory, supporting a functional role of RNA editing in behavior. Significantly, the editing paradox that functional recoding of CaV1.3 RNA editing sites slows Ca2+-dependent inactivation to increase Ca2+ influx but reduces channel open probability to decrease Ca2+ influx was resolved. Mechanistically, using hippocampal slice recordings, we provide evidence that unedited CaV1.3 channels permitted larger Ca2+ influx into the hippocampal pyramidal neurons to bolster neuronal excitability, synaptic transmission, late long-term potentiation, and increased dendritic arborization. Of note, RNA editing of the CaV1.3 IQ-domain was found to be evolutionarily conserved in mammals, which lends support to the importance of the functional recoding of the CaV1.3 channel in brain function.


Assuntos
Canais de Cálcio Tipo L , Hipocampo , Plasticidade Neuronal , Edição de RNA , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Hipocampo/metabolismo , Mamíferos/metabolismo , Camundongos , Plasticidade Neuronal/genética , Neurônios/metabolismo , Células Piramidais/metabolismo
8.
J Biol Chem ; 299(3): 102968, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736898

RESUMO

Photosystem II (PSII), the water:plastoquinone oxidoreductase of oxygenic photosynthesis, contains a heme b559 iron whose axial ligands are provided by histidine residues from the α (PsbE) and ß (PsbF) subunits. PSII assembly depends on accessory proteins that facilitate the step-wise association of its protein and pigment components into a functional complex, a process that is challenging to study due to the low accumulation of assembly intermediates. Here, we examined the putative role of the iron[1Fe-0S]-containing protein rubredoxin 1 (RBD1) as an assembly factor for cytochrome b559, using the RBD1-lacking 2pac mutant from Chlamydomonas reinhardtii, in which the accumulation of PSII was rescued by the inactivation of the thylakoid membrane FtsH protease. To this end, we constructed the double mutant 2pac ftsh1-1, which harbored PSII dimers that sustained its photoautotrophic growth. We purified PSII from the 2pac ftsh1-1 background and found that α and ß cytochrome b559 subunits are still present and coordinate heme b559 as in the WT. Interestingly, immunoblot analysis of dark- and low light-grown 2pac ftsh1-1 showed the accumulation of a 23-kDa fragment of the D1 protein, a marker typically associated with structural changes resulting from photodamage of PSII. Its cleavage occurs in the vicinity of a nonheme iron which binds to PSII on its electron acceptor side. Altogether, our findings demonstrate that RBD1 is not required for heme b559 assembly and point to a role for RBD1 in promoting the proper folding of D1, possibly via delivery or reduction of the nonheme iron during PSII assembly.


Assuntos
Chlamydomonas reinhardtii , Grupo dos Citocromos b , Complexo de Proteína do Fotossistema II , Rubredoxinas , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , Heme/metabolismo , Ferro/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Rubredoxinas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo
9.
J Biol Chem ; 299(3): 102921, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36681124

RESUMO

Circulating fatty acid-binding protein 3 (FABP3) is an effective biomarker of myocardial injury and peripheral artery disease (PAD). The endothelium, which forms the inner most layer of every blood vessel, is exposed to higher levels of FABP3 in PAD or following myocardial injury, but the pathophysiological role of endothelial FABP3, the effect of FABP3 exposure on endothelial cells, and related mechanisms are unknown. Here, we aimed to evaluate the pathophysiological role of endothelial FABP3 and related mechanisms in vitro. Our molecular and functional in vitro analyses show that (1) FABP3 is basally expressed in endothelial cells; (2) inflammatory stress in the form of lipopolysaccharide (LPS) upregulated endothelial FABP3 expression; (3) loss of endogenous FABP3 protected endothelial cells against LPS-induced endothelial dysfunction; however, exogenous FABP3 exposure exacerbated LPS-induced inflammation; (4) loss of endogenous FABP3 protected against LPS-induced endothelial dysfunction by promoting cell survival and anti-inflammatory and pro-angiogenic signaling pathways. Together, these findings suggest that gain-of endothelial FABP3 exacerbates, whereas loss-of endothelial FABP3 inhibits LPS-induced endothelial dysfunction by promoting cell survival and anti-inflammatory and pro-angiogenic signaling. We propose that an increased circulating FABP3 in myocardial injury or PAD patients may be detrimental to endothelial function, and therefore, therapies aimed at inhibiting FABP3 may improve endothelial function in diseased states.


Assuntos
Células Endoteliais , Proteína 3 Ligante de Ácido Graxo , Lipopolissacarídeos , Humanos , Células Endoteliais/patologia , Proteína 3 Ligante de Ácido Graxo/genética , Inflamação/induzido quimicamente , Transdução de Sinais/genética , Sobrevivência Celular/genética
10.
J Am Chem Soc ; 146(17): 11648-11656, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629317

RESUMO

Imidazolones represent an important class of heterocycles present in a wide range of pharmaceuticals, metabolites, and bioactive natural products and serve as the active chromophore in green fluorescent protein. Recently, imidazolones have received attention for their ability to act as a nonaromatic amide bond bioisotere which improves pharmacological properties. Herein, we present a tandem amidine installation and cyclization with an adjacent ester to yield (4H)-imidazolone products. Using amino acid building blocks, we can access the first examples of α-chiral imidazolones that have been previously inaccessible. Additionally, our method is amenable to on-resin installation which can be seamlessly integrated into existing solid-phase peptide synthesis protocols. Finally, we show that peptide imidazolones are potent cis-amide bond surrogates that preorganize linear peptides for head-to-tail macrocyclization. This work represents the first general approach to the backbone and side-chain insertion of imidazolone bioisosteres at various positions in linear and cyclic peptides.


Assuntos
Amidas , Imidazóis , Peptídeos , Imidazóis/química , Imidazóis/síntese química , Peptídeos/química , Peptídeos/síntese química , Amidas/química , Ciclização , Estereoisomerismo , Estrutura Molecular
11.
J Virol ; 97(11): e0062123, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37931130

RESUMO

IMPORTANCE: Ephrin-B2 (EFNB2) is a ligand for six Eph receptors in humans and regulates multiple cell developmental and signaling processes. It also functions as the cell entry receptor for Nipah virus and Hendra virus, zoonotic viruses that can cause respiratory and/or neurological symptoms in humans with high mortality. Here, we investigate the sequence basis of EFNB2 specificity for binding the Nipah virus attachment G glycoprotein over Eph receptors. We then use this information to engineer EFNB2 as a soluble decoy receptor that specifically binds the attachment glycoproteins of the Nipah virus and other related henipaviruses to neutralize infection. These findings further mechanistic understanding of protein selectivity and may facilitate the development of diagnostics or therapeutics against henipavirus infection.


Assuntos
Efrina-B2 , Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Proteínas Virais , Humanos , Efrina-B2/genética , Efrina-B2/metabolismo , Glicoproteínas/metabolismo , Ligantes , Proteínas Virais/metabolismo
12.
Mol Syst Biol ; 19(4): e11127, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36856068

RESUMO

Cancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell's ability to "secrete-and-sense" growth factors (GFs): a poorly understood phenomenon. Using an integrated computational and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαßγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control, allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose-response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint GFs (e.g., the epidermal GF) as key stimuli for such self-sustenance. Findings highlight how the enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.


Assuntos
Células Eucarióticas , Proteômica , Transdução de Sinais , GTP Fosfo-Hidrolases
13.
Plant Physiol ; 192(2): 1168-1182, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36960567

RESUMO

Rice (Oryza sativa) is of paramount importance for global nutrition, supplying at least 20% of global calories. However, water scarcity and increased drought severity are anticipated to reduce rice yields globally. We explored stomatal developmental genetics as a mechanism for improving drought resilience in rice while maintaining yield under climate stress. CRISPR/Cas9-mediated knockouts of the positive regulator of stomatal development STOMAGEN and its paralog EPIDERMAL PATTERNING FACTOR-LIKE10 (EPFL10) yielded lines with ∼25% and 80% of wild-type stomatal density, respectively. epfl10 lines with moderate reductions in stomatal density were able to conserve water to similar extents as stomagen lines but did not suffer from the concomitant reductions in stomatal conductance, carbon assimilation, or thermoregulation observed in stomagen knockouts. Moderate reductions in stomatal density achieved by editing EPFL10 present a climate-adaptive approach for safeguarding yield in rice. Editing the paralog of STOMAGEN in other species may provide a means for tuning stomatal density in agriculturally important crops beyond rice.


Assuntos
Oryza , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Resistência à Seca , Fotossíntese/genética , Secas
14.
Photosynth Res ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180578

RESUMO

Photoprotection mechanisms are ubiquitous among photosynthetic organisms. The photoprotection capacity of the green alga Chlamydomonas reinhardtii is correlated with protein levels of stress-related light-harvesting complex (LHCSR) proteins, which are strongly induced by high light (HL). However, the dynamic response of overall thylakoid structure during acclimation to growth in HL has not been fully understood. Here, we combined live-cell super-resolution microscopy and analytical membrane subfractionation to investigate macroscale structural changes of thylakoid membranes during HL acclimation in Chlamydomonas. Subdiffraction-resolution live-cell imaging revealed that the overall thylakoid structures became thinned and shrunken during HL acclimation. The stromal space around the pyrenoid also became enlarged. Analytical density-dependent membrane fractionation indicated that the structural changes were partly a consequence of membrane unstacking. The analysis of both an LHCSR loss-of-function mutant, npq4 lhcsr1, and a regulatory mutant that over-expresses LHCSR, spa1-1, showed that structural changes occurred independently of LHCSR protein levels, demonstrating that LHCSR was neither necessary nor sufficient to induce the thylakoid structural changes associated with HL acclimation. In contrast, stt7-9, a mutant lacking a kinase of major light-harvesting antenna proteins, had a slower thylakoid structural response to HL relative to all other lines tested but still showed membrane unstacking. These results indicate that neither LHCSR- nor antenna-phosphorylation-dependent HL acclimation are required for the observed macroscale structural changes of thylakoid membranes in HL conditions.

15.
NMR Biomed ; 37(8): e5117, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38356104

RESUMO

It has been shown using proton magnetic resonance spectroscopy (1H MRS) that, in a group of females, whole-body insulin resistance was more closely related to accumulation of saturated intramyocellular lipid (IMCL) than to IMCL concentration alone. This has not been investigated in males. We investigated whether age- and body mass index-matched healthy males differ from the previously reported females in IMCL composition (measured as CH2:CH3) and IMCL concentration (measured as CH3), and in their associations with insulin resistance. We ask whether saturated IMCL accumulation is more strongly associated with insulin resistance than other ectopic and adipose tissue lipid pools and remains a significant predictor when these other pools are taken into account. In this group of males, who had similar overall insulin sensitivity to the females, IMCL was similar between sexes. The males demonstrated similar and even stronger associations of IMCL with insulin resistance, supporting the idea that a marker reflecting the accumulation of saturated IMCL is more strongly associated with whole-body insulin resistance than IMCL concentration alone. However, this marker ceased to be a significant predictor of whole-body insulin resistance after consideration of other lipid pools, which implies that this measure carries no more information in practice than the other predictors we found, such as intrahepatic lipid and visceral adipose tissue. As the marker of saturated IMCL accumulation appears to be related to these two predictors and has a much smaller dynamic range, this finding does not rule out a role for it in the pathogenesis of insulin resistance.


Assuntos
Resistência à Insulina , Metabolismo dos Lipídeos , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Ácidos Graxos/metabolismo , Tecido Adiposo/metabolismo , Espectroscopia de Ressonância Magnética
16.
Glob Chang Biol ; 30(4): e17279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619007

RESUMO

There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.


Assuntos
Energia Solar , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Mudança Climática , Poluição Ambiental , Tempo (Meteorologia)
17.
J Org Chem ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39364858

RESUMO

Thioimidates are a precursor and synthetic branch point to access either thioamide or amidine isosteres of the native amide (peptide bond). Previous syntheses of thioimidate-containing peptides were prone to side reactivity and required slow, cumbersome steps that were difficult to monitor. We describe a more efficient approach to directly couple thioimidates onto the growing peptide chain. This work also outlines optimal conditions for thioimidate formation on solid support and identifies potential off-target sites for alkylation that impact the choice of protecting group.

18.
Photochem Photobiol Sci ; 23(4): 629-650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512633

RESUMO

This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.


Assuntos
Plásticos , Poluentes Químicos da Água , Humanos , Plásticos/toxicidade , Ecossistema , Raios Ultravioleta , Mudança Climática , Poluentes Químicos da Água/análise
19.
J Nucl Cardiol ; 36: 101850, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518887

RESUMO

Myocardial perfusion imaging (MPI) is a powerful tool for the functional assessment of ischemia in patients with suspected or known coronary artery disease (CAD). Given that the diagnostic accuracy and prognostic value of MPI and post-test management are highly dependent on achieving an adequate stress vasodilatory response, it is critical to identify those who may not have adequately responded to vasodilator pharmacological stress agents such as adenosine, dipyridamole, and regadenoson. Caffeine, a potent inhibitor of the adenosine receptor, is a compound that can affect vasodilatory hemodynamics, result in false negative studies, and potentially alter management in cases of inaccurate test results. Vasodilator non-responsiveness can be suspected by examining hemodynamics, quantitative positron emission tomography (PET) metrics such as myocardial flow reserve (MFR), and splenic response to stress. Quantitative MFR values of 1-1.2 should raise suspicion for nonresponsiveness in the setting of normal perfusion, along with the absence of a splenic switch off. Newer metrics, such as splenic response ratio, can be used to aid in the identification of potential nonresponders to pharmacologic vasodilators.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Vasodilatadores , Humanos , Imagem de Perfusão do Miocárdio/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Teste de Esforço , Tomografia por Emissão de Pósitrons/métodos , Dipiridamol/farmacologia , Circulação Coronária/efeitos dos fármacos , Adenosina , Purinas , Pirazóis
20.
Inorg Chem ; 63(3): 1513-1523, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38192194

RESUMO

The ambiphilic bicyclic (alkyl)(amino)carbenes (Me/iPrBICAAC) upon reaction with [IrCl(COD)]2 smoothly afford mononuclear Ir(I) complexes that have been spectroscopically and structurally characterized. These complexes exhibit good catalytic activity for transfer hydrogenation (TH) of 4-chlorobenzaldehyde using isopropyl alcohol (iPrOH), with turnover frequency values ranging between 6269 and 8093 h-1. Choosing the covalent complex Ir(MeBICAAC)Cl(COD) as a catalyst, a wide array of carbonyls and imines functionalized with electron-withdrawing and electron-donating substituents have been surveyed and afforded their reduced products in moderate-to-good yields. No detachment of the BICAAC unit from the Ir center was observed upon prolonged heating of Ir(MeBICAAC)Cl(COD) in toluene-d8 or isopropyl alcohol-d8, which evidenced good thermal stability of the catalyst. Complex Ir(MeBICAAC)Cl(COD) was also found to be catalytically active for the hydrosilylation of a variety of aldehydes using triethylsilane (Et3SiH).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA