Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(18): 187801, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018790

RESUMO

By neutron spin echo spectroscopy, we have studied the center of mass motion of short tracer chains on the molecular length scale within a highly entangled polymer matrix. The center of mass mean square displacements of the tracers independent of their molecular weight is subdiffusive at short times until it has reached the size of the tube d; then, a crossover to Fickian diffusion takes place. This observation cannot be understood within the tube model of reptation, but is rationalized as a result of important interchain couplings that lead to cooperative chain motion within the entanglement volume ∼d^{3}. Thus, the cooperative tracer chain motions are limited by the tube size d. If the center of mass displacement exceeds this size, uncorrelated Fickian diffusion takes over. Compared to the prediction of the Rouse model we observe a significantly reduced contribution of the tracer's internal modes to the spectra corroborating the finding of cooperative rather than Rouse dynamics within d^{3}.

2.
Phys Rev Lett ; 125(23): 238004, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33337173

RESUMO

This work clarifies the self-similar dynamics of large polymer rings using pulsed-field gradient nuclear magnetic resonance and neutron spin echo spectroscopy. We find center of mass diffusion taking place in three dynamic regimes starting (i) with a strongly subdiffusive domain ⟨r^{2}(t)⟩_{com}∼t^{α} (0.4≤α≤0.65); (ii) a second subdiffusive region ⟨r^{2}(t)⟩_{com}∼t^{0.75} that (iii) finally crosses over to Fickian diffusion. While the t^{0.75} range previously has been found in simulations and was predicted by theory, we attribute the first to the effect of cooperative dynamics resulting from the correlation hole potential. The internal dynamics at scales below the elementary loop size is well described by ring Rouse motion. At larger scales the dynamics is self-similar and follows very well the predictions of the scaling models with preference for the self-consistent fractal loopy globule model.

3.
J Chem Phys ; 152(5): 054901, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32035437

RESUMO

Investigations of polymer systems that rely on the interpretation of dynamical scattering results as, e.g., the structure factor S(Q, t) of single chains or chain sections may require the inclusion of effects, as described within the framework of the random phase approximation (RPA) for polymers. To do this in practice for the dynamic part of S(Q, t) beyond the initial slope is a challenge. Here, we present a method (and software) that allows a straightforward assessment of dynamical RPA effects and inclusion of these in the process/procedures of model fitting. Examples of applications to the interpretation of neutron spin-echo data multi-component polymer melts are shown.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA