Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 346: 119004, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37734213

RESUMO

In the pursuit of effective wastewater treatment and biomass generation, the symbiotic relationship between microalgae and bacteria emerges as a promising avenue. This analysis delves into recent advancements concerning the utilization of microalgae-bacteria consortia for wastewater treatment and biomass production. It examines multiple facets of this symbiosis, encompassing the judicious selection of suitable strains, optimal culture conditions, appropriate media, and operational parameters. Moreover, the exploration extends to contrasting closed and open bioreactor systems for fostering microalgae-bacteria consortia, elucidating the inherent merits and constraints of each methodology. Notably, the untapped potential of co-cultivation with diverse microorganisms, including yeast, fungi, and various microalgae species, to augment biomass output. In this context, artificial intelligence (AI) and machine learning (ML) stand out as transformative catalysts. By addressing intricate challenges in wastewater treatment and microalgae-bacteria symbiosis, AI and ML foster innovative technological solutions. These cutting-edge technologies play a pivotal role in optimizing wastewater treatment processes, enhancing biomass yield, and facilitating real-time monitoring. The synergistic integration of AI and ML instills a novel dimension, propelling the fields towards sustainable solutions. As AI and ML become integral tools in wastewater treatment and symbiotic microorganism cultivation, novel strategies emerge that harness their potential to overcome intricate challenges and revolutionize the domain.

2.
Bioresour Technol ; 370: 128572, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603755

RESUMO

To produce xylo-oligosaccharides (XOS) from the agriculture waste, which included, green coconut and vegetable cocktail. The two pretreatment - hydrogen peroxide-acetic acid (HP-AC) and sodium hypochlorite-sodium hydroxide (SH-SH) - were used for this study. The optimal conditions for the pretreatment were 80 °C, 4.0 % NaClO, and 2 h, followed by 0.08 % NaOH, 55 °C, and 1 h. Further enzymatic hydrolysis of green coconut (GC) and vegetable cocktail (VC) were performed and found in case of GC, the best outcomes were observed. Different types of XOS were obtained from the treated biomass whereas a single type of XOS xylo-pentose was obtained in high quantity (96.44 % and 93.09 % from CG and VC respectively) with the production of other XOS < 2 %. This study presents a reasonably secure and economical method for turning secondary crop residue into XOS and fermentable sugars.


Assuntos
Oligossacarídeos , Açúcares , Ácido Acético , Hidrólise , Biomassa , Glucuronatos , Endo-1,4-beta-Xilanases
3.
Toxicol Rep ; 6: 768-781, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428565

RESUMO

Engineered nanomaterials consisting of multiple nanoparticles (NPs) are finding their use in fields as wide and diverse as medicine, environment, cosmetics, energy and electronics. However, health and environmental impacts of these NPs need to be discerned individually to understand their true toxicity. Due to the promising application of upcoming material like GO-ZnO nanocomposite, the toxicity of ZnO and GO NPs was evaluated and compared individually in our study. This study compares the toxicity of Graphene Oxide (GO) NPs and Zinc Oxide (ZnO) NPs synthesized by Green method and Chemical method on Drosophila melanogaster. The GO, Chemical ZnO and Green ZnO NPs were synthesized and characterized using SEM, HR-TEM, FT-IR, UV-vis, EDX, XRD and DLS studies. NPs were comparatively analyzed for their cytotoxic and neurotoxic behaviors using different assays like MTT assay, mortality rate, larval crawling and climbing assay, total protein content analysis for evaluating the toxic potential of each of these NPs at different concentrations of use. Green ZnO were found to be least cytotoxic while Chemical ZnO caused the most cell damage. GO were found to have intermediary cytotoxicity. However, a different trend was observed with neurotoxicity wherein Green ZnO reportedly affected the neuromuscular coordination the most, while GO was found to have the least affect. This study provided insights into the different toxic effects caused by GO and ZnO NPs on Drosophila as well as comparative toxic effects of Chemical vs Green ZnO NPs.

4.
J Gen Appl Microbiol ; 65(1): 26-33, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29952346

RESUMO

Laccases are unable to oxidize the non-phenolic components of complex lignin polymer due to their less redox potential (E0). Catalytic efficiency of laccases relies on the mediators that potentiates their oxidative strength; for breaking the recalcitrant lignin. Laccase from Bacillus sp. SS4 was evaluated for its compatibility with natural and synthetic mediators. (2 mM). It was found that acetosyringone, vanillin, orcinol and veratraldehyde have no adverse effect on the laccase activity up to 3 h. Syringaldehyde, p-coumaric acid, ferulic acid and hydroquinone reduced the enzyme activity ≥50% after 1.0 h, but laccase activity remained 100 to ~120% in the presence of synthetic mediators HBT (1-Hydroxylbenzotrizole) and ABTS. (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) after 3 h. MgSO4 and MnSO4 (40 mM) increased the enzyme activity 3.5 fold and the enzyme possessed ≥70% activity at a very high concentration. (2 M) of NaCl. The enzyme retained 40-110% activity in the presence of 10% DMSO (dimethylsulfoxide), acetone, methanol and ethyl acetate. On the other hand, CuSO4 (100 µM) induced the laccase production 8.5 fold without increasing the growth of bacterial cells. Laccase from SS4 appropriately decolorized the indigo carmine (50 µM) completely in the presence of acetosyringone (100 µM) within 10 min and 25% decolorization was observed after 4 h without any mediator.


Assuntos
Bacillus/enzimologia , Microbiologia Industrial , Lacase/fisiologia , Estresse Fisiológico/fisiologia , Sulfato de Cobre/farmacologia , Ativadores de Enzimas/metabolismo , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Índigo Carmim/metabolismo , Lacase/biossíntese , Lacase/metabolismo , Metais , Compostos Orgânicos , Oxirredução , Biossíntese de Proteínas/efeitos dos fármacos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA