Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 542(7639): 115-118, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28117445

RESUMO

Skin cancer, the most common human malignancy, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs) show potential for general and highly variable tasks across many fine-grained object categories. Here we demonstrate classification of skin lesions using a single CNN, trained end-to-end from images directly, using only pixels and disease labels as inputs. We train a CNN using a dataset of 129,450 clinical images-two orders of magnitude larger than previous datasets-consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant melanomas versus benign nevi. The first case represents the identification of the most common cancers, the second represents the identification of the deadliest skin cancer. The CNN achieves performance on par with all tested experts across both tasks, demonstrating an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists. Outfitted with deep neural networks, mobile devices can potentially extend the reach of dermatologists outside of the clinic. It is projected that 6.3 billion smartphone subscriptions will exist by the year 2021 (ref. 13) and can therefore potentially provide low-cost universal access to vital diagnostic care.


Assuntos
Dermatologistas/normas , Redes Neurais de Computação , Neoplasias Cutâneas/classificação , Neoplasias Cutâneas/diagnóstico , Automação , Telefone Celular/estatística & dados numéricos , Conjuntos de Dados como Assunto , Humanos , Queratinócitos/patologia , Ceratose Seborreica/classificação , Ceratose Seborreica/diagnóstico , Ceratose Seborreica/patologia , Melanoma/classificação , Melanoma/diagnóstico , Melanoma/patologia , Nevo/classificação , Nevo/diagnóstico , Nevo/patologia , Fotografação , Reprodutibilidade dos Testes , Neoplasias Cutâneas/patologia
2.
Nature ; 546(7660): 686, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28658222

RESUMO

This corrects the article DOI: 10.1038/nature21056.

3.
J Invest Dermatol ; 138(10): 2108-2110, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30244720

RESUMO

The letters "Interpretation of the Outputs of Deep Learning Model trained with Skin Cancer Dataset" and "Automated Dermatological Diagnosis: Hype or Reality?" highlight the opportunities, hurdles, and possible pitfalls with the development of tools that allow for automated skin lesion classification. The potential clinical impact of these advances relies on their scalability, accuracy, and generalizability across a range of diagnostic scenarios.


Assuntos
Dermoscopia , Neoplasias Cutâneas , Aprendizado Profundo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA