Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 147(3): 034904, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28734311

RESUMO

Simulating three transport phenomena-ionic conductivity, viscosity, and self-diffusion coefficient-in a common Monte-Carlo framework, we discuss their relationship to the intermolecular interactions of electrolyte solutions at high concentrations (C/mol l-1 ∼ 1). The simulation is predicated on a pseudolattice model of the solution. The ions and solvents (collectively termed "molecules") are considered dimensionless points occupying the lattice sites. The molecular transport is realized by a repetition of swapping two adjacent molecules by the stochastic Gibbs sampling process based on simple intermolecular interactions. The framework has been validated by the fact that the simulated ionic conductivity and dynamic viscosity of 1:1- and 2:1-salts qualitatively well represent the experimental data. The magnitude of the Coulombic interaction itself is not reflected in the ionic conductivity, but the extent to which the Coulombic interaction is shielded by the dielectric constant has a significant influence. On the other hand, the dielectric constant barely influences the viscosity, while the magnitude of the Coulombic interaction is directly reflected in the viscosity.

2.
ACS Omega ; 9(37): 38523-38531, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39310178

RESUMO

Although moisture-induced deterioration mechanisms in sulfide solid electrolytes to enhance atmospheric stability have been investigated, the additional impact of CO2 exposure remains unclear. This study investigated the generation of H2S from Li4SnS4 under H2O and CO2 exposure. Li4SnS4 was exposed to Ar gas at a dew point of 0 °C with and without 500 ppm of CO2, and its ion conductive properties were evaluated. Although the lithium-ion conductivity of Li4SnS4 decreased regardless of the presence of CO2, the amount of H2S generated with CO2 was five times higher. To elucidate the underlying mechanism, X-ray diffraction and Raman spectroscopy were used. Without CO2, hydrate Li4SnS4·4H2O formation markedly increased, whereas, with CO2, it increased a little. The difference revealed distinct deterioration mechanisms leading to a decrease in lithium-ion conductivity: without CO2, adsorbed H2O and Li4SnS4·4H2O contributed to the decrease, while with CO2, a weak acid dissociation reaction could reduce the thermodynamic stability of the moisture-exposed Li4SnS4 surface including Li4SnS4·4H2O and adsorbed H2O, promoting H2S release and carbonate formation. This was supported by the recovery of lithium-ion conductivity after vacuum heating. The concerted influence of H2O and CO2 provides valuable insights into the fundamental deterioration mechanisms in sulfide solid electrolytes that could be applied in battery manufacturing processes.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38653212

RESUMO

The sulfide solid electrolyte Li4SnS4 has garnered considerable interest due to its exceptional moisture durability, which is attributed to its stable hydrated state. However, a major limitation of certain sulfide solid electrolytes, including Li4SnS4, is their low reduction durability, which limits their application in the negative electrodes of all-solid-state batteries and impedes qualitative material development assessments. In this study, we introduced a quantitative and straightforward method for evaluating the reductive decomposition of Li4SnS4 to better understand its degradation mechanism. The configuration of the electrochemical evaluation cell was modified from SUS|Li4SnS4|Li to SUS|Li4SnS4|Li3PS4|Li, allowing for stabilization of the reference potential of the counter electrode. The reductive decomposition potential of Li4SnS4 was quantitatively assessed by using cyclic voltammetry in a two-layer electrochemical evaluation cell. We observed a minor irreversible reduction current below +1.2 V and a pronounced decomposition peak at +1.0 V. Notably, reductive decomposition continued below 0 V, which is typically the onset point for Li electrodeposition. Postreduction, the solid electrolyte was comprehensively analyzed through optical microscopy, X-ray diffraction, and X-ray absorption spectroscopy. These analyzes revealed the following: (i) The SnS44- unit in Li4SnS4 initially decomposes into Li2S and ß-Sn with the dissociation of the Sn-S bond; (ii) the resulting ß-Sn forms LixSn alloys such as Li0.4Sn; and (iii) the ongoing reductive decomposition reaction is facilitated by the electronic conductivity of these LixSn alloys. These findings offer crucial methodological and mechanistic insights into the development of higher-performance solid electrolyte materials.

4.
RSC Adv ; 14(10): 7229-7233, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38419678

RESUMO

We successfully prepared an Fe- and Li-containing polysulfide positive electrode material (Li8FeS5-Li2FeS2 composite) that shows a high specific capacity (>500 mA h g-1) with improved rate capability in all-solid-state cells. High-resolution TEM analysis indicated the coexistence of small crystallites of high-conductivity Li2FeS2 and FeS, as well as low-crystallinity Li2S, in the composite, and this microstructure is responsible for the improved battery performance.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35829727

RESUMO

Amorphous transition-metal polysulfides are promising positive electrode materials for next-generation rechargeable lithium-ion batteries because of their high theoretical capacities. In this study, sulfur anion redox during lithiation of amorphous TiS4 (a-TiS4) was investigated by using experimental and theoretical methods. It was found that a-TiS4 has a variety of sulfur valence states such as S2-, S-, and Sδ-. The S2- species became the main component in the Li4TiS4 composition, indicating that sulfur is a redox-active element up to this composition. The simulated a-TiS4 structure changed gradually by lithium accommodation to form a-Li4TiS4: S-S bonds in the disulfide units and polysulfide chains were broken. Bader charge analysis suggested that the average S valency decreased drastically. Moreover, deep lithiation of a-TiS4 provided a conversion reaction to metallic Ti and Li2S, with a high practical capacity of ∼1000 mAh g-1 when a lower cutoff voltage was applied.

6.
J Am Chem Soc ; 133(31): 11854-7, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21751788

RESUMO

In this work, with a zeolite-type metal-organic framework as both a precursor and a template and furfuryl alcohol as a second precursor, nanoporous carbon material has been prepared with an unexpectedly high surface area (3405 m(2)/g, BET method) and considerable hydrogen storage capacity (2.77 wt % at 77 K and 1 atm) as well as good electrochemical properties as an electrode material for electric double layer capacitors. The pore structure and surface area of the resultant carbon materials can be tuned simply by changing the calcination temperature.

7.
RSC Adv ; 11(61): 38880-38888, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-35493219

RESUMO

Sulfide solid electrolytes with high ionic conductivity and high air stability must be developed for manufacturing sulfide all-solid-state batteries. Li10GeP2S12-type and argyrodite-type solid electrolytes exhibit a high ionic conductivity of ∼10-2 S cm-1 at room temperature, while emitting toxic H2S gas when exposed to air. We focused on hexagonal Li4SnS4 prepared by mechanochemical treatment because it comprises air-stable SnS4 tetrahedra and shows higher ionic conductivity than orthorhombic Li4SnS4 prepared by solid-phase synthesis. Herein, to enhance the ionic conductivity of hexagonal Li4SnS4, LiI was added to Li4SnS4 by mechanochemical treatment. The ionic conductivity of 0.43LiI·0.57Li4SnS4 increased by 3.6 times compared with that of Li4SnS4. XRD patterns of Li4SnS4 with LiI showed peak-shifting to lower angles, indicating that introduction of I-, which has a large ionic radius, expanded the Li conduction paths. Furthermore, Li3PS4, which is the most air-stable in the Li2S-P2S5 system and has higher ionic conductivity than Li4SnS4, was added to the LiI-Li4SnS4 system. We found that 0.37LiI·0.25Li3PS4·0.38Li4SnS4 sintered at 200 °C showed the highest ionic conductivity of 5.5 × 10-4 S cm-1 at 30 °C in the hexagonal Li4SnS4-based solid electrolytes. The rate performance of an all-solid-state battery using 0.37LiI·0.25Li3PS4·0.38Li4SnS4 heated at 200 °C was higher than those obtained using Li4SnS4 and 0.43LiI·0.57Li4SnS4. In addition, it exhibited similar air stability to Li4SnS4 by formation of LiI·3H2O in air. Therefore, addition of LiI and Li3PS4 to hexagonal Li4SnS4 by mechanochemical treatment is an effective way to enhance ionic conductivity without decreasing the air stability of Li4SnS4.

8.
Sci Rep ; 8(1): 15086, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305719

RESUMO

The charge-discharge capacity of lithium secondary batteries is dependent on how many lithium ions can be reversibly extracted from (charge) and inserted into (discharge) the electrode active materials. In contrast, large structural changes during charging/discharging are unavoidable for electrode materials with large capacities, and thus there is great demand for developing materials with reversible structures. Herein, we demonstrate a reversible rocksalt to amorphous phase transition involving anion redox in a Li2TiS3 electrode active material with NaCl-type structure. We revealed that the lithium extraction during charging involves a change in site of the sulfur atom and the formation of S-S disulfide bonds, leading to a decrease in the crystallinity. Our results show great promise for the development of long-life lithium insertion/extraction materials, because the structural change clarified here is somewhat similar to that of optical phase-change materials used in DVD-RW discs, which exhibit excellent reversibility of the transition between crystalline and amorphous phase.

9.
Sci Rep ; 4: 3650, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24413423

RESUMO

Using sodium, instead of lithium, in rechargeable batteries is a way to circumvent the lithium's resource problem. The challenge is to find an electrode material that can reversibly undergo redox reactions in a sodium-electrolyte at the desired electrochemical potential. We proved that indigo carmine (IC, 5,5'-indigodisulfonic acid sodium salt) can work as a positive-electrode material in not only a lithium-, but also a sodium-electrolyte. The discharge capacity of the IC-electrode was ~100 mAh g(-1) with a good cycle stability in either the Na or Li electrolyte, in which the average voltage was 1.8 V vs. Na(+)/Na and 2.2 V vs. Li(+)/Li, respectively. Two Na ions per IC are stored in the electrode during the discharge, testifying to the two-electron redox reaction. An X-ray diffraction analysis revealed a layer structure for the IC powder and the DFT calculation suggested the formation of a band-like structure in the crystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA