RESUMO
Domino Knoevenagel-cyclization reactions of N-arylcinnamylamines were carried out with active methylene reagents, which took place with five competing cyclization mechanisms: intramolecular hetero Diels-Alder reaction, stepwise polar [2 + 2] cycloaddition, styryl or aza-Diels-Alder reactions followed by rearomatization, and [1,5]-hydride shift-6-endo cyclization. In the stepwise aza-Diels-Alder reaction, the N-vinylpyridinium moiety acted as an azadiene, producing a condensed heterocycle with tetrahydroquinolizinium and tetrahydroquiniline subunits. Antiproliferative activity with low micromolar IC50 values was identified for some of the novel scaffolds.
RESUMO
A chemical investigation of Laburnicola nematophila, isolated from cysts of the plant parasitic nematode Heterodera filipjevi, affored three dactylfungin derivatives (1-3) and three tetralone congeners (4-6). Dactylfungin C (1), laburnicolin (4), and laburnicolenone (5) are previously undescribed natural products. Chemical structures of the isolated compounds were determined based on 1D and 2D NMR spectroscopic analyses together with HR-ESI-MS spectrometry and comparison with data reported in the literature. The relative configurations of compounds 1, 2, and 4-6 were determined based on their ROESY data and analysis of their coupling constants (J values). The absolute configurations of 4-6 were determined through the comparison of their measured and calculated TDDFT-ECD spectra. Compounds 1-3 were active against azole-resistant Aspergillus fumigatus.
Assuntos
Tetralonas , Animais , Estrutura Molecular , Tetralonas/farmacologia , Tetralonas/química , Antifúngicos/farmacologia , Antifúngicos/química , Testes de Sensibilidade Microbiana , Tylenchoidea/efeitos dos fármacosRESUMO
A simplified molecular-dynamics-based electronic circular dichroism (ECD) approach was tested on three condensed derivatives with limited conformational flexibility and an isochroman-2H-chromene hybrid, the ECD spectra of which could not be precisely reproduced by the conventional ECD calculation protocol. Application of explicit solvent molecules at the molecular mechanics (MD) level in the dynamics simulations and subsequent TDDFT-ECD calculation for the unoptimized MD structures was able to improve the agreements between experimental and computed spectra. Since enhancements were achieved even for molecules with limited conformational flexibility, deformations caused by the solvent molecules and multitudes of conformers produced with unoptimized geometries seem to be key factors for better agreement. The MD approach could confirm that aggregation of the phenanthrene natural product luzulin A had a significant contribution to a specific wavelength range of the experimental ECD. The MD approach has proved that dimer formation occurred in solution and this was responsible for the anomalous ECD spectrum. The scope and limitations of the method have also been discussed.
Assuntos
Dicroísmo Circular , Simulação de Dinâmica Molecular , Dicroísmo Circular/métodos , Fenantrenos/química , Conformação Molecular , Solventes/químicaRESUMO
Optically active heterodimeric 5,5'-linked bis-isochromans, containing a stereogenic ortho-trisubstituted biaryl axis and up to four chirality centers, were synthesized stereoselectively by using a Suzuki-Miyaura biaryl coupling reaction of optically active isochroman and 1-arylpropan-2-ol derivatives, providing the first access to synthetic biaryl-type isochroman dimers. Enantiomeric pairs and stereoisomers up to seven derivatives were prepared with four different substitution patterns, which enabled us to test how OR, ECD, and VCD measurements and DFT calculations can be used to determine parallel central and axial chirality elements in three isolated blocks of chirality. In contrast to natural penicisteckins A-D and related biaryls, the ECD spectra and OR data of (aS) and (aR) atropodiastereomers did not reflect the opposite axial chirality, but they were characteristic of the central chirality. The atropodiastereomers showed consistently near-mirror-image VCD curves, allowing the determination of axial chirality with the aid of DFT calculation or by comparison of characteristic VCD transitions.
Assuntos
Dimerização , Estereoisomerismo , Dicroísmo Circular , Estrutura Molecular , Cromanos/química , Cromanos/síntese química , Modelos Moleculares , Teoria da Densidade FuncionalRESUMO
Abundisporin A (1), together with seven previously undescribed drimane sesquiterpenes named abundisporins B-H (2-8), were isolated from a polypore, Abundisporus violaceus MUCL 56355 (Polyporaceae), collected in Kenya. Chemical structures of the isolated compounds were elucidated based on exhaustive 1D and 2D NMR spectroscopic measurements and supported by HRESIMS data. The absolute configurations of the isolated compounds were determined by using Mosher's method for 1-4 and TDDFT-ECD calculations for 4 and 5-8. None of the isolated compounds exhibited significant activities in either antimicrobial or cytotoxicity assays. Notably, all of the tested compounds demonstrated neurotrophic effects, with 1 and 6 significantly increasing outgrowth of neurites when treated with 5 ng/mL NGF.
Assuntos
Polyporaceae , Sesquiterpenos , Estrutura Molecular , Sesquiterpenos/química , Polyporaceae/química , Crescimento NeuronalRESUMO
In this study, we report the isolation of two new meroterpenoids, miniolutelide D (1) and miniolutelide E (13-epi-miniolutelide C) (2), along with two meroterpenoidal analogues (3 and 4) and two phenolic compounds (5 and 6) from the endophytic fungus Talaromyces purpureogenus derived from Punica granatum fruits. Their structures were elucidated using extensive MS, 1D, and 2D NMR spectroscopic analyses as well as by comparing with data in the literature. The absolute configurations of 1 and 2 were determined using TDDFT-ECD calculations. Antimicrobial activity was evaluated. Compound 5 displayed significant activity against methicillin-resistant Staphylococcus aureus strain ATCC 700699 and moderate activity against S. aureus strain ATCC 29213.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Punica granatum , Talaromyces , Estrutura Molecular , Staphylococcus aureus , Frutas , Talaromyces/químicaRESUMO
Even with the aid of the available methods, the configurational assignment of natural products can be a challenging task that is prone to errors, and it sometimes needs to be corrected after total synthesis or single-crystal X-ray diffraction (XRD) analysis. Herein, the absolute configuration of amidochelocardin is revised using a combination of XRD, NMR spectroscopy, experimental ECD spectra, and time-dependent density-functional theory (TDDFT)-ECD calculations. As amidochelocardin was obtained via biosynthetic engineering of chelocardin, we propose the same absolute configuration for chelocardin based on the similar biosynthetic origins of the two compounds and result of TDDFT-ECD calculations. The evaluation of spectral data of two closely related analogues, 6-desmethyl-chelocardin and its semisynthetic derivative 1, also supports this conclusion.
RESUMO
Chemical investigation of an alcoholic extract from the stem of Daphne papyracea ("Xuehuagou") led to the isolation of the tetracyclic sesquiterpenoid daphnepapytone A (1), containing a unique caged skeleton with a cyclobutane ring having three tetrasubstituted chirality centers. Also isolated were new guaiane sesquiterpenoids, namely, daphnepapytones B-H (2-8), and one 1,5-diphenylpentanone 2-hydroxy-5-oxo-daphneone (9), together with 26 known compounds. The cyclic metabolites share a 5-isoprenyl-hexahydroazulene-2(1H)-one skeleton with different substitution patterns and a bridged cyclobutane, oxetane, or tetrahydrofuran ring. The planar structures and relative configuration of the new compounds were elucidated on the basis of spectroscopic analysis aided by DFT 13C NMR calculations. The absolute configurations of 1-7 were determined by X-ray single-crystal diffraction or TDDFT-ECD calculations. Daphnepapytones A and C (1 and 3), 2-hydroxy-5-oxodaphneone (9), daphnenone (10), daphneone (11), and 3-methyldaphneolone (12) showed α-glycosidase inhibitory activity, with IC50 values of 159.0, 102.3, 139.3, 43.3, 145.0, and 126.1 µM, respectively.
Assuntos
Ciclobutanos/química , Daphne/química , Éteres Cíclicos/química , Furanos/química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Caules de Planta/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cristalografia por Raios X , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Estrutura Molecular , Sesquiterpenos/isolamento & purificação , EstereoisomerismoRESUMO
The bacterial genus Tenacibaculum has been associated with various ecological roles in marine environments. Members of this genus can act, for example, as pathogens, predators, or episymbionts. However, natural products produced by these bacteria are still unknown. In the present work, we investigated a Tenacibaculum strain for the production of antimicrobial metabolites. Six new phenethylamine (PEA)-containing alkaloids, discolins A and B (1 and 2), dispyridine (3), dispyrrolopyridine A and B (4 and 5), and dispyrrole (6), were isolated from media produced by the predatory bacterium Tenacibaculum discolor sv11. Chemical structures were elucidated by analysis of spectroscopic data. Alkaloids 4 and 5 exhibited strong activity against Gram-positive Bacillus subtilis DSM10, Mycobacterium smegmatis ATCC607, Listeria monocytogenes DSM20600, and Staphylococcus aureus ATCC25923, with minimum inhibitory concentration (MIC) values ranging from 0.5 to 4 µg/mL, and moderate activity against Candida albicans FH2173 and Aspergillus flavus ATCC9170. Compound 6 displayed moderate antibacterial activities against Gram-positive bacteria. Dispyrrolopyridine A (4) was active against efflux pump deficient Escherichia coli ATCC25922 ΔtolC, with an MIC value of 8 µg/mL, as well as against Caenorhabditis elegans N2 with an MIC value of 32 µg/mL. Other compounds were inactive against these microorganisms. The biosynthetic route toward discolins A and B (1 and 2) was investigated using in vivo and in vitro experiments. It comprises an enzymatic decarboxylation of phenylalanine to PEA catalyzed by DisA, followed by a nonenzymatic condensation to form the central imidazolium ring. This spontaneous formation of the imidazolium core was verified by means of a synthetic one-pot reaction using the respective building blocks. Six additional strains belonging to three Tenacibaculum species were able to produce discolins, and several DisA analogues were identified in various marine flavobacterial genera, suggesting the widespread presence of PEA-derived compounds in marine ecosystems.
Assuntos
Alcaloides , Anti-Infecciosos , Tenacibaculum , Alcaloides/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Ecossistema , Escherichia coli , Flavobacterium , Testes de Sensibilidade Microbiana , FenetilaminasRESUMO
VCD analysis of 16 diastereomeric pairs of NHC precursors containing two isolated chirality centers and different substitution patterns identified VCD transitions characteristic of the chirality center in the imidazolium ring or in the side chain, which, in contrast to ECD and OR, could be utilized to assign the two chirality centers separately by simple comparison, regardless of the type and position of achiral aromatic substituents. While the ECD and OR data showed great dependence on the position of an achiral substituent such as a methoxy group, characteristic experimental VCD transitions remained consistent and they could be used to determine the absolute configuration of all the regio- and stereoisomers and substituted analogues. VCD, ECD and OR approaches were evaluated, and several carbene precursors were found, for which only the VCD method could distinguish the four stereoisomers. With t-butyl, phenyl or 2-naphthyl substituents at the C-1' chirality center, the ECD spectra of the C-1' epimers were near-identical, and hence it was only the VCD approach that showed distinct differences suitable for the configurational assignment. The chiroptical characterization of our diastereomeric pairs of NHC precursors enables the future application of related derivatives having different substitution patterns in stereoselective transformations.
Assuntos
Dicroísmo Circular , Metano/análogos & derivados , EstereoisomerismoRESUMO
Epoxide hydrolases (EHs) have been characterized and engineered as biocatalysts that convert epoxides to valuable chiral vicinal diol precursors of drugs and bioactive compounds. Nonetheless, the regioselectivity control of the epoxide ring opening by EHs remains challenging. Alp1U is an α/ß-fold EH that exhibits poor regioselectivity in the epoxide hydrolysis of fluostatin C (compound 1) and produces a pair of stereoisomers. Herein, we established the absolute configuration of the two stereoisomeric products and determined the crystal structure of Alp1U. A Trp-186/Trp-187/Tyr-247 oxirane oxygen hole was identified in Alp1U that replaced the canonical Tyr/Tyr pair in α/ß-EHs. Mutation of residues in the atypical oxirane oxygen hole of Alp1U improved the regioselectivity for epoxide hydrolysis on 1. The single site Y247F mutation led to highly regioselective (98%) attack at C-3 of 1, whereas the double mutation W187F/Y247F resulted in regioselective (94%) nucleophilic attack at C-2. Furthermore, single-crystal X-ray structures of the two regioselective Alp1U variants in complex with 1 were determined. These findings allowed insights into the reaction details of Alp1U and provided a new approach for engineering regioselective epoxide hydrolases.
Assuntos
Cristalografia por Raios X/métodos , Epóxido Hidrolases/química , Epóxido Hidrolases/metabolismo , Compostos de Epóxi/química , Óxido de Etileno/química , Mutação , Streptomyces/enzimologia , Epóxido Hidrolases/genética , Hidrólise , Cinética , Mutagênese Sítio-Dirigida/métodos , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
Penicisteckins A-D (1-4), two pairs of atropodiastereomeric biaryl-type hetero- and homodimeric bis-isochromans with 7,5'- and 7,7'-linkages and a pair of atropodiastereomeric 2-(isochroman-5-yl)-1,4-benzoquinone derivatives [penicisteckins E (5) and F (6)], were isolated from the Penicillium steckii HNNU-5B18. Their structures including the absolute configuration were determined by extensive spectroscopic and single-crystal X-ray diffraction analysis and TDDFT-ECD calculations. Both the bis-isochromans and the isochroman/1,4-benzoquinone conjugates represent novel biaryl scaffolds containing both central and axial chirality elements. The monomer anserinone B (8) exhibited potent antibacterial activities against Staphylococcus aureus ATCC 29213 and methicillin-resistant Staphylococcus aureus with minimal inhibition concentration values ranging from 2 to 8 µg mL-1. Plausible biosynthetic pathways of 1-6 are proposed, which suggest how the absolute configurations of the isolates were established during the biosynthetic scheme.
Assuntos
Antibacterianos/isolamento & purificação , Cromanos/isolamento & purificação , Penicillium/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Vias Biossintéticas , Cromanos/química , Cromanos/farmacologia , Staphylococcus aureus/efeitos dos fármacosRESUMO
Two unprecedented limonoids incorporating a sterically encumbered cyclopropane ring, named granatripodins A (1) and B (2), featuring the presence of a tricyclo[3.3.1.02,8]nonane motif, were obtained from seeds of the Thai Xylocarpus granatum. The planar structures and absolute configurations of these limonoids were unambiguously established by NMR investigations, TDDFT-ECD and DFT-NMR calculations, and single-crystal X-ray diffraction analysis (Cu Kα). Most notably, granatripodin A (1) exhibited agonistic effects on human pregnane-X-receptor at the concentration of 100.0 nM. The biosynthetic origins of these limonoids via a radical cascade reaction are proposed. This study exemplifies a universal approach for the stereochemical assignment of polycyclic compounds with a cyclopropane-embedded cage scaffold.
Assuntos
Limoninas/farmacologia , Receptor de Pregnano X/agonistas , Relação Dose-Resposta a Droga , Humanos , Limoninas/química , Limoninas/isolamento & purificação , Meliaceae/química , Conformação Molecular , Sementes/química , Relação Estrutura-AtividadeRESUMO
Eight phenalenone derivatives, including four new compounds, aceneoherqueinones A and B (1 and 2), (+)-aceatrovenetinone A (3a), and (+)-aceatrovenetinone B (3d), along with four known congeners, (-)-aceatrovenetinone A (3b), (-)-aceatrovenetinone B (3c), (-)-scleroderolide (4a), and (+)-scleroderolide (4b), were characterized from the marine mangrove-derived fungus Penicillium herquei MA-370. Among them, compounds 1 and 2 are rare phenalenone derivatives featuring cyclic ether unit between C-5 and C-2'. All of these compounds were subjected to chiral HPLC analysis, and the unstable stereoisomers 3a-3d, containing configurationally labile chirality centers, were characterized by online HPLC-ECD measurements supported with TDDFT-ECD calculations. The structures of these compounds were elucidated by detailed analysis of their NMR and mass spectroscopic data, and the absolute configuration of compound 1 was confirmed by X-ray diffraction analysis, while those of compounds 2 and 3a-3d were determined by TDDFT-ECD calculations of their ECD spectra. All of the isolated compounds were tested for the inhibitory activity against angiotensin-I-converting enzyme (ACE), and compounds 1 and 2 displayed activity with IC50 values 3.10 and 11.28 µM, respectively. The intermolecular interaction and potential binding sites of 1 and 2 with ACE were elaborated by molecular docking, showing that compound 1 bound well with ACE via hydrogen interactions with residues Ala261, Gln618, Trp621, and Asn624, while compound 2 interacted with residues Asp358 and Tyr360.
Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Penicillium/química , Peptidil Dipeptidase A/metabolismo , Fenalenos/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Estrutura Molecular , Fenalenos/química , Fenalenos/isolamento & purificação , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
Increasing evidence suggests that the use of potent neuroprotective agents featured with novel pharmacological mechanism would offer a promising strategy to delay or prevent the progression of neurodegeneration. Here, we provide the first demonstration that the chiral nonracemic isochroman-2H-chromene conjugate JE-133, a novel synthetic 1,3-disubstituted isochroman derivative, possesses superior neuroprotective effect against oxidative injuries. Pretreatment with JE-133 (1-10 µM) concentration-dependently prevented H2O2-induced cell death in SH-SY5Y neuroblastoma cells and rat primary cortical neurons. Pretreatment with JE-133 significantly alleviated H2O2-induced apoptotic changes. These protective effects could not be simply attributed to the direct free radical scavenging as JE-133 had moderate activity in reducing DPPH free radical. Further study revealed that pretreatment with JE-133 (10 µM) significantly decreased the phosphorylation of MAPK pathway proteins, especially ERK and P38, in the neuronal cells. In addition, blocking PI3K/Akt pathway using LY294002 partially counteracted the cell viability-enhancing effect of JE-133. We conclude that JE-133 exerts neuroprotection associated with dual regulative mechanisms and consequently activating cell survival and inhibiting apoptotic changes, which may provide important clues for the development of effective neuroprotective drug lead/candidate.
Assuntos
Benzopiranos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Benzopiranos/síntese química , Linhagem Celular Tumoral , Sequestradores de Radicais Livres/síntese química , Humanos , Peróxido de Hidrogênio/farmacologia , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/síntese química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , EstereoisomerismoRESUMO
Sorangipyranone was isolated as a novel natural product featuring a unique 2,3-dihydro-γ-4H-pyrone scaffold from cultures of the myxobacterial strain MSr12020. We report here the full structure elucidation of sorangipyranone by spectroscopic techniques including 2D NMR and high-resolution mass spectrometry together with the analysis of the biosynthetic pathway. Determination of the absolute configuration was performed by time-dependent density functional theory-electronic circular dichroism calculations and determination of the applicability of the Snatzke's helicity rule, to correlate the high-wavelength nâπ* electronic circular dichroism (ECD) transition and the absolute configuration of the 2,3-dihydro-4H-γ-pyrone, was done by the analysis of low-energy conformers and the Kohn-Sham orbitals. Sorangipyranone outlines a new class of a γ-dihydropyrone-containing natural product comprised of malonyl-CoA-derived building blocks and features a unique polyketide scaffold. In silico analysis of the genome sequence of the myxobacterial strain MSr12020 complemented with feeding experiments employing stable isotope-labeled precursors allowed the identification and annotation of a candidate biosynthetic gene cluster that encodes a modular polyketide synthase assembly line. A model for the biosynthetic pathway leading to the formation of the γ-dihydropyrone scaffold is presented in this study.
Assuntos
Myxococcales/metabolismo , Sequência de Bases , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Vias Biossintéticas/genética , Família Multigênica , Myxococcales/química , Myxococcales/genética , Policetídeo Sintases/metabolismo , Policetídeos/química , Policetídeos/metabolismoRESUMO
Three new p-terphenyl derivatives, named 4â³-O-methyl-prenylterphenyllin B (1) and phenylcandilide A and B (17 and 18), and three new indole-diterpene alkaloids, asperindoles E-G (22-24), were isolated together with eighteen known analogues from the fungi Aspergillus candidus associated with the South China Sea gorgonian Junceela fragillis. The structures and absolute configurations of the new compounds were elucidated on the basis of spectroscopic analysis, and DFT/NMR and TDDFT/ECD calculations. In a primary cultured cortical neuronal network, the compounds 6, 9, 14, 17, 18 and 24 modulated spontaneous Ca2+ oscillations and 4-aminopyridine hyperexcited neuronal activity. A preliminary structure-activity relationship was discussed.
Assuntos
Antozoários/parasitologia , Aspergillus/química , Diterpenos/farmacologia , Alcaloides Indólicos/farmacologia , Neurônios/efeitos dos fármacos , Compostos de Terfenil/farmacologia , Animais , Antozoários/microbiologia , Organismos Aquáticos/química , Sinalização do Cálcio , Diterpenos/química , Diterpenos/isolamento & purificação , Alcaloides Indólicos/química , Alcaloides Indólicos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Oceanos e Mares , Cultura Primária de Células , Relação Estrutura-Atividade , Compostos de Terfenil/química , Compostos de Terfenil/isolamento & purificaçãoRESUMO
Nine new sesquiterpenoids (1-9) were isolated from ethyl ether extract of agarwood originated from Aquilaria sp., including three novel sesquiterpenoids (1-3) derived from zizaane, together with six zizaane-type sesquiterpenoids (4-9). All structures were unambiguously elucidated based on 1D and 2D NMR spectra as well as by HRESIMS data. The absolute configuration of sesquiterpenoids was determined by comparison of the experimental and computed ECD spectra. In vitro anti-inflammatory assessment showed that compound 9 exhibited inhibition of NO production in LPS-stimulated RAW264.7 cells with an IC50 value of 62.22 ± 1.27 µM.
Assuntos
Sesquiterpenos/química , Thymelaeaceae/química , Madeira/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular , Células RAW 264.7 , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologiaRESUMO
The Heck-oxyarylation of racemic 2-(1-naphthyl)- and 2-(2-naphthyl)-2H-chromene derivatives were carried out resulting diastereoselectively in (6S*,6aR*,11aR*)-6-(1-naphthyl)- and 6-(2-naphthyl)-pterocarpans as major products and bridged (6R*,12R*)-6,12-methanodibenzo[d,g][1,3]dioxocine derivatives as minor products. Antiproliferative activity of two 6-naphthylpterocarpans was identified by MTT assay against A2780 and WM35 human cancer cell lines with low micromolar IC50 values. The measured 0.80 and 3.51 µM IC50 values of the (6S*,6aR*,11aR*)-6-(1-naphthyl)pterocarpan derivative with 8,9-methylenedioxy substitution represent the best activities in the pterocarpan family. Enantiomers of the pterocarpan and dioxocine derivatives and their chiral 2-naphthylchroman-4-one and 2-naphthyl-2H-chromene precursors were separated by HPLC using chiral stationary phase. HPLC-ECD spectra were recorded and absolute configuration and low-energy solution conformations were determined by TDDFT-ECD calculations. Characteristic ECD transitions of the separated enantiomers were correlated with their absolute configuration.
RESUMO
Phenanthrenes have become the subject of intensive research during the past decades because of their structural diversity and wide range of pharmacological activities. Earlier studies demonstrated that semisynthetic derivatization of these natural compounds could result in more active agents, and oxidative transformations are particularly promising in this regard. In our work, a natural phenanthrene, juncuenin B, was transformed by hypervalent iodine(III) reagents using a diversity-oriented approach. Eleven racemic semisynthetic compounds were produced, the majority containing an alkyl substituted p-quinol ring. Purification of the compounds was carried out by chromatographic techniques, and their structures were elucidated by 1D and 2D NMR spectroscopic methods. Stereoisomers of the bioactive derivatives were separated by chiral-phase HPLC and the absolute configurations of the active compounds, 2,6-dioxo-1,8a-dimethoxy-1,7-dimethyl-8-vinyl-9,10-dihydrophenanthrenes (1a-d), and 8a-ethoxy-1,7-dimethyl-6-oxo-8-vinyl-9,10-dihydrophenanthrene-2-ols (7a,b) were determined by ECD measurements and TDDFT-ECD calculations. The antiproliferative activities of the compounds were tested on different (MCF-7, T47D, HeLa, SiHa, C33A, A2780) human gynecological cancer cell lines. Compounds 1a-d, 4a, 6a, and 7a possessed higher activity than juncuenin B on several tumor cell lines. The structure-activity relationship studies suggested that the p-quinol (2,5-cyclohexadien-4-hydroxy-1-one) moiety has a considerable effect on the antiproliferative properties, and substantial differences could be identified in the activities of the stereoisomers.