RESUMO
Cannabidiol (CBD) is a chemical obtained from Cannabis sativa; it has therapeutic effects on anxiety and cognition and anti-inflammatory properties. Although pharmacological applications of CBD in many types of tumors have recently been reported, the mechanism of action of CBD is not yet fully understood. In this study, we perform an mRNA-seq analysis to identify the target genes of CBD after determining the cytotoxic concentrations of CBD using an MTT assay. CBD treatment regulated the expression of genes related to DNA repair and cell division, with metallothionein (MT) family genes being identified as having highly increased expression levels induced by CBD. It was also found that the expression levels of MT family genes were decreased in colorectal cancer tissues compared to those in normal tissues, indicating that the downregulation of MT family genes might be highly associated with colorectal tumor progression. A qPCR experiment revealed that the expression levels of MT family genes were increased by CBD. Moreover, MT family genes were regulated by CBD or crude extract but not by other cannabinoids, suggesting that the expression of MT family genes was specifically induced by CBD. A synergistic effect between CBD and MT gene transfection or zinc ion treatment was found. In conclusion, MT family genes as novel target genes could synergistically increase the anticancer activity of CBD by regulating the zinc ions in human colorectal cancer cells.
Assuntos
Canabidiol , Canabinoides , Cannabis , Neoplasias Colorretais , Humanos , Canabidiol/farmacologia , Metalotioneína/genética , Metalotioneína/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Cannabis/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genéticaRESUMO
Cannabis sativa L. contains more than 80 cannabinoids, among which cannabidiol (CBD) is the main neuroactive component. We aimed to investigate the anti-inflammatory efficacy of CBD in vitro and in vivo isolated from "Pink pepper", a novel hemp cultivar, by repeating the method of selecting and cultivating individuals with the highest CBD content. We investigated the effects of CBD on inflammatory markers elevated by lipopolysaccharide (LPS) treatment in RAW 264.7 mouse macrophage cells through Western blot and RT-PCR. In addition, we confirmed these effects through the ELISA of inflamed paw tissue of a λ-carrageenan-induced mouse edema model that received an oral administration of CBD. CBD inhibited the LPS-induced phosphorylation of NF-κB and MAPK in RAW 264.7 and exhibited anti-inflammatory effects by participating in these pathways. In our in vivo study, we confirmed that CBD also inhibited the inflammatory mediators of proteins extracted from edematous mouse paw tissue. These results show that CBD isolated from "Pink pepper" exhibits potent anti-inflammatory effects. These anti-inflammatory effects of CBD have pharmacological and physiological significance, highlighting the industrial value of this novel cultivar.
Assuntos
Canabidiol , Cannabis , Piper nigrum , Animais , Camundongos , Canabidiol/farmacologia , Lipopolissacarídeos/efeitos adversos , Administração Oral , Alimentos , Modelos Animais de DoençasRESUMO
BACKGROUND AND PURPOSE: Dieckol is a phlorotannin that can be found in seaweeds, particularly in Eisenia bicyclis (brown algae) and is known to have anti-oxidant, anti-inflammatory, and anti-microbial properties. It also possesses anti-thrombotic and pro-fibrinolytic activities; however, the mechanistic aspects of anti-platelet and anti-thrombotic activity are yet to be explored. STUDY DESIGN AND METHODOLOGY: We investigated the pharmacological effects of dieckol on the modulation of platelet functions using human, rat, and mice models. Inhibitory effects of dieckol on platelet aggregation were assessed using platelet-rich plasma and washed platelets, followed by measurement of dense granule secretions, fibrinogen binding to integrin αIIbß3, fibronectin adhesion assay, platelet spreading on immobilized fibrinogen, and clot retraction. Cyclic nucleotide signaling events were evaluated, such as cyclic-AMP production followed by vasodilator-stimulated phosphoprotein (VASP) stimulation. The in vivo anti-thrombotic potential was evaluated in mice using an acute pulmonary thromboembolism model and tail bleeding assay. RESULTS: Dieckol markedly inhibited platelet aggregation and granule secretion; furthermore, it down-regulated integrin αIIbß3-mediated inside-out and outside-in signaling events, including platelet adhesion, spreading, and clot retraction, whereas it upregulated the cAMP-PKA-VASP pathway. Dieckol-treated mice significantly survived the thrombosis than vehicle treated mice, without affecting hemostasis. Histological examinations of lungs revealed minimum occluded vasculature in dieckol-treated mice. CONCLUSION: Dieckol possesses strong anti-platelet and anti-thrombotic properties and is a potential therapeutic drug candidate to treat and prevent platelet-related cardiovascular disorders.
Assuntos
Benzofuranos , Plaquetas , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Trombose , Animais , Benzofuranos/farmacologia , Plaquetas/efeitos dos fármacos , Fibrinogênio/metabolismo , Hemostasia , Humanos , Camundongos , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Ratos , Trombose/tratamento farmacológico , Trombose/metabolismoRESUMO
We investigated whether isoleucilactucin, an active constituent of Ixeridium dentatum, reduces inflammation caused by coal fly ash (CFA) in alveolar macrophages (MH-S). The anti-inflammatory effects of isoleucilactucin were assessed by measuring the concentration of nitric oxide (NO) and the expression of pro-inflammatory mediators in MH-S cells exposed to CFA-induced inflammation. We found that isoleucilactucin reduced CFA-induced NO generation dose-dependently in MH-S cells. Moreover, isoleucilactucin suppressed CFA-activated proinflammatory mediators, including cyclooxygenase-2 (COX2) and inducible NO synthase (iNOS), and the proinflammatory cytokines such as interleukin-(IL)-1ß, IL-6, and tumor necrosis factor (TNF-α). The inhibiting properties of isoleucilactucin on the nuclear translocation of phosphorylated nuclear factor-kappa B (p-NF-κB) were observed. The effects of isoleucilactucin on the NF-κB and mitogen-activated protein kinase (MAPK) pathways were also measured in CFA-stimulated MH-S cells. These results indicate that isoleucilactucin suppressed CFA-stimulated inflammation in MH-S cells by inhibiting the NF-κB and MAPK pathways, which suggest it might exert anti-inflammatory properties in the lung.
Assuntos
Anti-Inflamatórios/farmacologia , Asteraceae/química , Cinza de Carvão/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , NF-kappa B/metabolismo , Compostos Fitoquímicos/farmacologia , Animais , Anti-Inflamatórios/química , Linhagem Celular , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Macrófagos Alveolares/patologia , Camundongos , Compostos Fitoquímicos/químicaRESUMO
Phlorofucofuroeckol A (PFF-A), one of the phlorotannins found in brown algae, has been reported to exert anti-cancer property. However, the molecular mechanism for the anti-cancer effect of PFF-A has not been known. Activating transcription factor 3 (ATF3) has been reported to be associated with apoptosis in colorectal cancer. The present study was performed to investigate the molecular mechanism by which PFF-A stimulates ATF3 expression and apoptosis in human colorectal cancer cells. PFF-A decreased cell viability through apoptosis of human colorectal cancer cells. PFF-A increased ATF3 expression through regulating transcriptional activity. The responsible cis-element for ATF3 transcriptional activation by PFF-A was cAMP response element binding protein (CREB), located between positions -147 and -85 of the ATF3 promoter. Inhibition of p38, c-Jun N-terminal kinases (JNK), glycogen synthase kinase (GSK) 3ß, and IκB kinase (IKK)-α blocked PFF-A-mediated ATF3 expression. ATF3 knockdown by ATF3 siRNA attenuated the cleavage of poly (ADP-ribose) polymerase (PARP) by PFF-A, while ATF3 overexpression increased PFF-A-mediated cleaved PARP. These results suggest that PFF-A may exert anti-cancer property through inducing apoptosis via the ATF3-mediated pathway in human colorectal cancer cells.
Assuntos
Fator 3 Ativador da Transcrição/genética , Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Dioxinas/farmacologia , Regulação para Cima/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proteína de Ligação a CREB/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/genética , Células HCT116 , Células HT29 , Humanos , Quinase I-kappa B/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacosRESUMO
BACKGROUND: Brown algae have been used for their nutritional value as well as a source of bioactive compounds with antioxidant, anti-inflammatory, antimicrobial and anti-obesity effects. Obesity is an important condition implicated in various diseases, including diabetes, hypertension, dyslipidemia and coronary heart disease. However, anti-obesity effects of Eisenia bicyclis remain unknown. RESULTS: We investigated the anti-obesity effects of 6,6'-bieckol, 6,8'-bieckol, 8,8'-bieckol, dieckol and phlorofucofuroeckol A isolated from E. bicyclis. Anti-obesity activity was evaluated by examining the inhibition of differentiation of 3T3-L1 adipocytes and the expression of peroxisome proliferator-activated receptor γ (PPARγ), CCATT/enhancer-binding protein α (C/EBPα) and sterol regulatory element binding protein-1c (SREBP-1c) at the mRNA and protein level. Differentiated 3T3-L1 cells were treated with the purified phlorotannins at concentrations of 10, 25 and 50 µg mL(-1) for 8 days. The results indicated that the purified phlorotannins suppressed the differentiation of 3T3-L1 adipocytes in a dose-dependent manner, without toxic effects. Among the five compounds, 6,6'-bieckol markedly decreased lipid accumulation and expression levels of PPARγ, C/EBPα, SREBP-1c (mRNA and protein), and fatty acid synthase and acyl-coA carboxylase (mRNA). CONCLUSION: These findings suggest that E. bicyclis suppressed differentiation of 3T3-L1 adipocyte through downregulation of adipogenesis and lipogenesis.
Assuntos
Adipogenia/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Dioxinas/farmacologia , Regulação para Baixo/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Células 3T3-L1 , Animais , Fármacos Antiobesidade/efeitos adversos , Fármacos Antiobesidade/química , Fármacos Antiobesidade/isolamento & purificação , Benzofuranos/efeitos adversos , Benzofuranos/química , Benzofuranos/isolamento & purificação , Benzofuranos/farmacologia , Carbono-Carbono Ligases/antagonistas & inibidores , Carbono-Carbono Ligases/genética , Carbono-Carbono Ligases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Dioxinas/efeitos adversos , Dioxinas/química , Dioxinas/isolamento & purificação , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Camundongos , Estrutura Molecular , PPAR gama/antagonistas & inibidores , PPAR gama/genética , PPAR gama/metabolismo , Oceano Pacífico , Phaeophyceae/química , República da Coreia , Alga Marinha/química , EstereoisomerismoRESUMO
Juglans mandshurica Maxim. walnut (JMW) is well-known for the treatment of dermatosis, cancer, gastritis, diarrhea, and leukorrhea in Korea. However, the molecular mechanism underlying its anti-obesity activity remains unknown. In the current study, we aimed to determine whether JMW can influence adipogenesis in 3T3-L1 preadipocytes and high-fat diet rats and determine the antioxidant activity. The 20% ethanol extract of JMW (JMWE) had a total polyphenol content of 133.33 ± 2.60 mg GAE/g. Considering the antioxidant capacity, the ABTS and DPPH values of 200 µg/ml of JMWE were 95.69 ± 0.94 and 79.38 ± 1.55%, respectively. To assess the anti-obesity activity of JMWE, we analyzed the cell viability, fat accumulation, and adipogenesis-related factors, including CCAAT-enhancer-binding protein alpha (C/EBPα), sterol regulatory element-binding protein-1c (SREBP1c), peroxisome proliferator-activated receptor-gamma (PPARγ), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). We found that total lipid accumulation and triglyceride levels were reduced, and the fat accumulation rate decreased in a dose-dependent manner. Furthermore, JMWE suppressed adipogenesis-related factors C/EBPα, PPARγ, and SREBP1c, as well as FAS and ACC, both related to lipogenesis. Moreover, animal experiments revealed that JMWE could be employed to prevent and treat obesity-related diseases. Hence, JMWE could be developed as a healthy functional food and further explored as an anti-obesity drug.
Assuntos
Fármacos Antiobesidade , Juglans , Camundongos , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Juglans/metabolismo , Células 3T3-L1 , Dieta Hiperlipídica/efeitos adversos , PPAR gama/metabolismo , Adipócitos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Adipogenia , Fármacos Antiobesidade/química , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/farmacologia , Proteína alfa Estimuladora de Ligação a CCAAT/uso terapêutico , Acetil-CoA Carboxilase/metabolismo , Extratos Vegetais/metabolismoRESUMO
Pineapple mealybug, Dysmicoccus brevipes (Hemiptera: Pseudococcidae), is a significant pest in pineapple production and a key trade barrier. We explored the potential use of ethyl formate (EF) as a methyl bromide alternative for the postharvest fumigation of D. brevipes in imported pineapples. When treated at 8 °C for 4 h, EF fumigation was effective against D. brevipes with LCt99, the lethal concentration × time product of EF necessary to achieve 99% mortality of D. brevipes nymphs and adults at 64.2 and 134.8 g h/m3, respectively. Sorption trials conducted with 70 g/m3 EF for 4 h at 8 °C using 7.5, 15 and 30% pineapple loading ratios (w/v) indicated that loading ratio lower than 30% is necessary to achieve the LCt99 values required to control D. brevipes. In a scaled up trial using 1 m3 chamber, EF fumigation with 70 g/m3 for 4 h at 8 °C with 20% pineapple loading ratio (w/v) resulted in a complete control of D. brevipes treated. There were no significant differences in hue values, sugar contents, firmness, and weight loss between EF-treated and untreated pineapples. Our results suggest that EF is a promising alternative to methyl bromide fumigation for the postharvest phytosanitary disinfection of D. brevipes in pineapples.
RESUMO
Cannabinoid decarboxylation via thermo-chemical conversion has the potential to reduce the cannabinoid degradation and evaporation due to short reaction time and use of water as the solvent. When combined with pressurized liquid extraction (PLE), thermo-chemical conversion can be performed as the first stage in the extraction procedure. PLE utilizes a closed system at elevated temperatures and pressure to increase the solvation power, which contributes to decreased viscosity and increased diffusion rate. With this new in-extraction decarboxylation approach there remain variables that need full understanding before up scaling from bench top to pilot or commercial scale. Herein, the thermo-chemical decarboxylation kinetics was studied for industrial hemp via PLE at different temperatures (80-160 °C) and reaction times (1-90 min). The reaction was found to be pseudo-first order. Model verification on CBD and CBG resulted in acceptable results; however, an anomaly in the minor cannabinoids suggests that cannabinoid concentration may influence model kinetics.
RESUMO
A novel epoxide hydrolase (EHase) from polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was identified and characterized. EHase activity was identified in four strains of PAH-degrading bacteria isolated from commercial gasoline and oil-contaminated sediment based on their growth on styrene oxide and its derivatives, such as 2,3- and 4-chlorostyrene oxides, as a sole carbon source. Gordonia sp. H37 exhibited high enantioselective hydrolysis activity for 4-chlorostyrene oxide with an enantiomeric ratio of 27. Gordonia sp. H37 preferentially hydrolyzed the (R)-enantiomer of styrene oxide derivatives resulting in the preparation of a (S)-enantiomer with enantiomeric excess greater than 99.9 %. The enantioselective EHase activity was identified and characterized in various PAH-degrading bacteria, and whole cell Gordonia sp. H37 was employed as a biocatalyst for preparing enantiopure (S)-styrene oxide derivatives.
Assuntos
Bactérias/enzimologia , Bactérias/metabolismo , Epóxido Hidrolases/metabolismo , Compostos de Epóxi/metabolismo , Bactérias/isolamento & purificação , Carbono/metabolismo , Sedimentos Geológicos/microbiologia , HidróliseRESUMO
Invasive snails and flies are major pests of imported orchids, controlled by methyl bromide (MB) fumigation in Korea. We compared the efficacy and phytotoxicity of ethyl formate (EF) and MB on four species of imported orchids using juvenile stages of Achatina fulica and third and fourth instars of Lycoriella mali. EF was as effective as MB. The LCt99 values of EF were 68.1 and 73.1 g h/m3 at 15 °C; and those of MB were 95.9 and 78.4 g h/m3 at 15 °C for A. fulica and L. mali, respectively. In the scale-up trials, EF treatment at 35 g/m3 for 4 h at 15 °C resulted in complete control of both pests. MB treatment based on the current treatment guidelines for imported orchids (48 g/m3, 2 h, at >15 °C) resulted in complete control of L. mali but not of A. fulica. Chlorophyll content and hue values of treated orchids were not affected by EF treatment but significantly changed by MB (p-value < 0.05). All four treated species of orchids died within 30 d of MB treatment, while only one species died from EF treatment. Our results suggest that EF is a potential alternative to MB in phytosanitary treatment of imported orchids.
RESUMO
Phosphine (PH3) and ethyl formate (EF), the two popular fumigant disinfectants of stored product insect pests, are primarily evaluated for their knock down effects without considering their post-fumigation sub-lethal activities. The sub-lethal activities (adult survivorship, fecundity, sterility and female sex pheromone production) of the fumigants were evaluated on a field-to-storage insect pest adzuki bean beetle, Callosobruchus chinensis (L.). The adults' survivorship and female fecundity, both were dose-dependently affected by sub-lethal PH3 and EF fumigation exposures. Hatchability of the eggs laid by fumigated female adults were also significantly affected. Gas-chromatography mass-spectrometry analysis of solid-phase micro-extraction from virgin fumigated C. cinensis females revealed that the PH3 LC25 (the lethal concentration required to kill the 25% of the population) fumigated female C. chinensis released significantly less amount of the pheromone components. In contrast, EF LC25 exposure did not affect the pheromone release. This study unveils the facts that the EF and PH3 fumigation have detrimental bioactivities against C. chinensis. Notably, this suggests to consider the sub-lethal EF and PH3 fumigation rather than the dose required to instantly kill all the C. chinensis individuals for disinfestation of stored adzuki bean.
Assuntos
Besouros , Inseticidas , Fosfinas , Atrativos Sexuais , Feminino , Animais , Atrativos Sexuais/farmacologia , Feromônios , Sobrevivência , Fumigação , Insetos , Fertilidade , Inseticidas/farmacologiaRESUMO
Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), commonly known as greenhouse whitefly, is one of the main insect pests of Oriental melon (Cucumis melo var L.) in South Korea. T. vaporariorum is of concern as a quarantine pest for the exportation of C. melo in Southeast Asian countries. Due to future restrictions on the use of methyl bromide (MB) during quarantine, ethyl formate (EF) represents a potential alternative. In this study, we evaluated EF for its efficacy (probit-9 values) in enabling the export of Oriental melons. The probit-9 value of EF for controlling T. vaporariorum was 3.02 g·h/m3 after 2 h of fumigation. We also assessed the phytotoxicity of EF on melons when using modified atmosphere packaging (MAP) under low-temperature conditions, which is required for export and trade, to extend shelf-life. In scaled-up trials, we found 8 g/m3 EF for 2 h at 5 °C to be suitable as a new phytosanitary treatment against greenhouse whitefly for exported Oriental melons when using MAP. No phytotoxic damage was found 28 d after fumigation at 5 °C in terms of five quality parameters (firmness, sugar content, mass loss, color change, and external damage).
RESUMO
BACKGROUND: Δ9-Tetrahydrocannabinol (Δ9-THC) is a principal psychoactive extract of Cannabis sativa and has been traditionally used as palliative medicine for neuropathic pain. Cannabidiol (CBD), an extract of hemp species, has recently attracted increased attention as a cancer treatment, but Δ9-THC is also requiring explored pharmacological application. OBJECTIVE: This study evaluated the pharmacological effects of Δ9-THC in two human colorectal cancer cell lines. We investigated whether Δ9-THC treatment induces cell death in human colorectal cancer cells. METHODS: We performed an MTT assay to determine the pharmacological concentration of Δ9-THC. Annxein V and Western blot analysis confirmed that Δ9-THC induced apoptosis in colorectal cancer cells. Metabolic activity was evaluated using MitoTracker staining and ATP determination. We investigated vesicle formation by Δ9-THC treatment using GW9662, known as a PPARγ inhibitor. RESULTS: The MTT assay showed that treatment with 40 µM Δ9-THC and above inhibited the proliferation of colorectal cancer cells. Multiple intracytoplasmic vesicles were detected upon microscopic observation, and fluorescence-activated cell sorting analysis showed cell death via G1 arrest. Δ9-THC treatment increased the expression of cell death marker proteins, including p53, cleaved PARP-1, RIP1, and RIP3, suggesting that Δ9-THC induced the death of colorectal cancer cells. Δ9-THC treatment also reduced ATP production via changes in Bax and Bcl-2. Δ9-THC regulated intracytoplasmic vesicle formation by modulating the expression of PPARγ and clathrin, adding that antiproliferative activity of Δ9-THC was also affected. CONCLUSION: In conclusion, Δ9-THC regulated two functional mechanisms, intracellular vesicle formation and cell death. These findings can help to determine how cannabinoids can be used most effectively to improve the efficacy of cancer treatment.
Assuntos
Cannabis , Neoplasias Colorretais , Humanos , Dronabinol/farmacologia , PPAR gama , Apoptose , Neoplasias Colorretais/tratamento farmacológico , Extratos Vegetais , Trifosfato de AdenosinaRESUMO
Sweet persimmons are a valuable export commodity. However, the presence of live insects such as Asiacornococcus kaki limits their access to many export markets. Methyl bromide, traditionally used for pest control, is damaging to human health and the environment. Ethyl formate (EF) is a viable alternative; however, its effectiveness against A. kaki on sweet persimmon fruit is unknown. We evaluated the effectiveness of EF fumigation in controlling A. kaki present under the calyx of persimmon fruit. The hatching rate of eggs and the survival rates of nymphs and adults of A. kaki at low temperatures, its LCt50 and LCt99 after EF exposure, and phytotoxic damage caused by EF were evaluated in laboratory-scale and commercial-scale tests. The dose-response tests showed that the EF LCt99 at 5 °C was 9.69, 42.13, and 126.13 g h m-3 for adults, nymphs, and eggs, respectively. Commercial-scale tests demonstrated EF efficacy against all A. kaki stages without causing phytotoxic effects on persimmons, though the eggs of A. kaki were not completely controlled in linear low-density polyethylene (LLDPE)-packaged fruit. This study demonstrated that EF is a potential fumigant for quarantine pretreatment, especially before persimmon fruit is packed with LLDPE film, to control A. kaki infesting sweet persimmon fruit.
RESUMO
Cannabichromene (CBC), a non-psychoactive cannabinoid found in Cannabis sativa, has recently been shown to possess several medicinal properties. However, how CBC produces anti-inflammatory effects and the mechanisms of this remain poorly studied. Therefore, we extracted and purified the CBC from the Cannabis sativa cv. pink pepper (hemp cultivar). The efficacy of CBC in reducing inflammation in RAW 264.7 macrophages and a λ-carrageenan-induced mouse model was then evaluated. CBC had no cytotoxicity up to a concentration of 20 µM and inhibited nitric oxide production by approximately 50% at a concentration of 20 µM. In addition, CBC treatment significantly inhibited causes of inflammation such as inducible nitric oxide synthase (iNOS), interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-α (TNF-α) at both the mRNA and protein levels. Moreover, CBC suppressed LPS-stimulated inflammation in RAW 264.7 cells by downregulating the nuclear factor kappa B (NF-kB) and mitogen-activated protein kinase pathways (MAPK). Furthermore, our in vivo experiments confirmed that the λ-carrageenan-induced increase in the levels of the cytokines iNOS, IL-1ß, and IL-6 was abrogated following treatment with CBC. Therefore, CBC has potential anti-inflammatory effects and may be useful for preventing or treating inflammation.
RESUMO
Castanea crenata Siebold & Zucc. (Fagales: Fagaceae), a species of chestnut native to Korea and Japan, is distributed in Korea, Japan, and northeastern China, where chestnuts are a major economic agroforest product. Curculio spp. is among the main known pests of chestnuts around the world. In Korea, only phosphine (PH3) is permitted for the fumigation of C. sikkimensis larva-infested chestnuts. However, it is applied for large-scale fumigation, and its use is restricted. Moreover, it requires a long exposure time and an application device; thus, it cannot be used by small-scale farmers. In this study, the activity of ethyl formate (EF) as a fumigant against Curculio sikkimensis in chestnuts was investigated, and its potential for practical use by farmers was evaluated. The sorption of EF according to the filling ratio (FR) and fumigation time was tested, and the results revealed that 2.5% FR was the most effective. For C. sikkimensis in chestnuts, the mortality rate increased proportionately with the dose of EF. After exposure to 160 g/m3 of EF in a 12 L desiccator, the adult C. sikkimensis showed 100% mortality. According to the time-dose mortality data collected over 12 h of fumigation, the LCT90 and LCT99 values were estimated as 1052.0 and 1952.0 g·h/m3. The results revealed that immersion was not an effective method for controlling C. sikkimensis. According to the LCT values, a dose of 180.0 g/m3 and 12 h of fumigation resulted in 100% mortality on a small scale (2 m3). The results of this experiment indicate that EF could be conveniently used as a fumigant by farmers.
RESUMO
Rosa rugosa root is traditionally known to be effective in the treatment of diabetes in Korea. R. rugosa root-specific compounds also show antioxidant effects, and could reduce lipid and fat accumulation, however, the underlying mechanism has not been clarified. In present study, the antioxidant and lipid-reducing effects of a 50% ethanol extract of R. rugosa (REE) were investigated differentiated mouse preadipocytes (3T3-L1 cells). REE showed strong radical scavenging activities and inhibitory effect of total lipid accumulation and triglyceride levels in differentiated 3T3-L1 cells. In addition, REE treatment reduced the mRNA and protein levels of adipogenesis and lipogenesis markers. This REE-promoted lipid reduction was caused by downregulation of peroxisome proliferator activated receptor gamma (PPARγ), CCAAT/enhancer binding protein alpha (C/EBPα), and sterol regulatory element binding protein1 (SREBP1c) and down regulation of ERK expression. Overall, these results demonstrate the potential of REE for development of a drug in the medical treatment of lipid-associated disorders.
RESUMO
Industrial hemp (Cannabis spp.) has many compounds of interest with potential medical benefits. Of these compounds, cannabinoids have come to the center of attention, specifically acidic cannabinoids. The focus is turning toward acidic cannabinoids due to their lack of psychotropic activity. Cannabis plants produce acidic cannabinoids with hemp plants producing low levels of psychotropic cannabinoids. As such, utilization of hemp for acidic cannabinoid extraction would eliminate the need for decarboxylation prior to extraction as a source for the cannabinoids. The use of solvent-based extraction is ideal for obtaining acidic cannabinoids as their solubility in solvents such as supercritical CO2 is limited due to the high pressure and temperature required to reach their solubility constants. An alternative method designed to increase solubility is ultrasonic-assisted extraction. In this protocol, the impact of solvent polarity (acetonitrile 0.46, ethanol 0.65, methanol 0.76, and water 1.00) and concentration (20%, 50%, 70%, 90%, and 100%) on ultrasonic-assisted extraction efficiency has been examined. Results show that water was the least effective and acetonitrile was the most effective solvent examined. Ethanol was further examined since it has the lowest toxicity and is generally regarded as safe (GRAS). Surprisingly, 50% ethanol in water is the most effective ethanol concentration for extracting the highest amount of cannabinoids from hemp. The increase in cannabidiolic acid concentration was 28% when compared to 100% ethanol, and 23% when compared to 100% acetonitrile. While it was determined that 50% ethanol is the most effective concentration for our application, the method has also been demonstrated to be effective with alternative solvents. Consequently, the proposed method is deemed effective and rapid for extracting acidic cannabinoids.
Assuntos
Canabinoides , Cannabis , Alucinógenos , Acetonitrilas , Biomassa , Etanol , Extratos Vegetais , Solventes , Ultrassom , ÁguaRESUMO
Extracts of phytocannabinoids from Cannabis sativa have been studied for therapeutic purposes. Although nonpsychoactive CBD has been studied as a promising anticancer drug because it induces apoptosis in many cancer cells, it is also known to induce several physiological changes. In this study, we clarify the functional role it plays in the morphological characteristics of intracellular vesicle formation as well as apoptosis in A549 human lung cancer cells. CBD treatment shows growth inhibition at concentrations above 20 µM, but FACS analysis shows low efficacy in terms of cell death. Microscopic observations suggest that multiple vesicles were detected in the cytoplasmic region of CBD-treated A549 cells. CBD treatment upregulates apoptosis-related proteins, such as p53, PARP, RIP1, RIP3, Atg12, and Beclin, indicating that CBD regulates several types of cell death. CBD treatment also induced E-cadherin, PPARγ, clathrin, ß-adaptin, and Tsg101, also known to be cellular-differentiation inducers or vesicle-formation components. Treatment combining CBD with GW9662, a PPARγ inhibitor, reduced CBD-induced cytoplasmic vesicle formation. This indicates that PPARγ regulates the vesicle-formation mechanism. However, CBD-treated E-cad KO clones did not show this regulatory mechanism. These results elucidate the pharmacological and molecular networks associated with CBD in PPARγ-dependent vesicle formation and the induction of apoptosis.