Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.079
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(2): 306-322, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33450206

RESUMO

The escalating social and economic burden of an aging world population has placed aging research at center stage. The hallmarks of aging comprise diverse molecular mechanisms and cellular systems that are interrelated and act in concert to drive the aging process. Here, through the lens of telomere biology, we examine how telomere dysfunction may amplify or drive molecular biological processes underlying each hallmark of aging and contribute to development of age-related diseases such as neurodegeneration and cancer. The intimate link of telomeres to aging hallmarks informs preventive and therapeutic interventions designed to attenuate aging itself and reduce the incidence of age-associated diseases.


Assuntos
Envelhecimento/genética , Saúde , Telômero/genética , Animais , Senescência Celular/genética , Instabilidade Genômica , Humanos , Telomerase/metabolismo
2.
Nat Immunol ; 23(6): 904-915, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618834

RESUMO

Malignancy can be suppressed by the immune system. However, the classes of immunosurveillance responses and their mode of tumor sensing remain incompletely understood. Here, we show that although clear cell renal cell carcinoma (ccRCC) was infiltrated by exhaustion-phenotype CD8+ T cells that negatively correlated with patient prognosis, chromophobe RCC (chRCC) had abundant infiltration of granzyme A-expressing intraepithelial type 1 innate lymphoid cells (ILC1s) that positively associated with patient survival. Interleukin-15 (IL-15) promoted ILC1 granzyme A expression and cytotoxicity, and IL-15 expression in chRCC tumor tissue positively tracked with the ILC1 response. An ILC1 gene signature also predicted survival of a subset of breast cancer patients in association with IL-15 expression. Notably, ILC1s directly interacted with cancer cells, and IL-15 produced by cancer cells supported the expansion and anti-tumor function of ILC1s in a murine breast cancer model. Thus, ILC1 sensing of cancer cell IL-15 defines an immunosurveillance mechanism of epithelial malignancies.


Assuntos
Neoplasias da Mama , Interleucina-15/metabolismo , Animais , Neoplasias da Mama/genética , Linfócitos T CD8-Positivos , Feminino , Granzimas , Humanos , Imunidade Inata , Linfócitos , Camundongos
3.
Cell ; 173(4): 1045-1057.e9, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727663

RESUMO

Ependymal cells are multi-ciliated cells that form the brain's ventricular epithelium and a niche for neural stem cells (NSCs) in the ventricular-subventricular zone (V-SVZ). In addition, ependymal cells are suggested to be latent NSCs with a capacity to acquire neurogenic function. This remains highly controversial due to a lack of prospective in vivo labeling techniques that can effectively distinguish ependymal cells from neighboring V-SVZ NSCs. We describe a transgenic system that allows for targeted labeling of ependymal cells within the V-SVZ. Single-cell RNA-seq revealed that ependymal cells are enriched for cilia-related genes and share several stem-cell-associated genes with neural stem or progenitors. Under in vivo and in vitro neural-stem- or progenitor-stimulating environments, ependymal cells failed to demonstrate any suggestion of latent neural-stem-cell function. These findings suggest remarkable stability of ependymal cell function and provide fundamental insights into the molecular signature of the V-SVZ niche.


Assuntos
Epêndima/metabolismo , Genômica , Actinas/genética , Actinas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Epêndima/citologia , Epêndima/efeitos dos fármacos , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Análise de Célula Única , Nicho de Células-Tronco , Transcriptoma , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Cell ; 170(2): 226-247, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28708995

RESUMO

The nervous system-in particular, the brain and its cognitive abilities-is among humans' most distinctive and impressive attributes. How the nervous system has changed in the human lineage and how it differs from that of closely related primates is not well understood. Here, we consider recent comparative analyses of extant species that are uncovering new evidence for evolutionary changes in the size and the number of neurons in the human nervous system, as well as the cellular and molecular reorganization of its neural circuits. We also discuss the developmental mechanisms and underlying genetic and molecular changes that generate these structural and functional differences. As relevant new information and tools materialize at an unprecedented pace, the field is now ripe for systematic and functionally relevant studies of the development and evolution of human nervous system specializations.


Assuntos
Evolução Biológica , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Sistema Nervoso/anatomia & histologia , Sistema Nervoso/crescimento & desenvolvimento , Animais , Encéfalo/citologia , Regulação da Expressão Gênica , Idioma , Mutação , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/citologia , Fenômenos Fisiológicos do Sistema Nervoso , Primatas/genética , Primatas/fisiologia , Especificidade da Espécie
5.
Mol Cell ; 84(1): 107-119, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38118451

RESUMO

The ability to sense and respond to infection is essential for life. Viral infection produces double-stranded RNAs (dsRNAs) that are sensed by proteins that recognize the structure of dsRNA. This structure-based recognition of viral dsRNA allows dsRNA sensors to recognize infection by many viruses, but it comes at a cost-the dsRNA sensors cannot always distinguish between "self" and "nonself" dsRNAs. "Self" RNAs often contain dsRNA regions, and not surprisingly, mechanisms have evolved to prevent aberrant activation of dsRNA sensors by "self" RNA. Here, we review current knowledge about the life of endogenous dsRNAs in mammals-the biosynthesis and processing of dsRNAs, the proteins they encounter, and their ultimate degradation. We highlight mechanisms that evolved to prevent aberrant dsRNA sensor activation and the importance of competition in the regulation of dsRNA sensors and other dsRNA-binding proteins.


Assuntos
RNA de Cadeia Dupla , Viroses , Animais , RNA de Cadeia Dupla/genética , RNA Helicases DEAD-box/metabolismo , Imunidade Inata , Mamíferos/metabolismo
6.
Genes Dev ; 37(17-18): 818-828, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37775182

RESUMO

Activating KRAS mutations (KRAS*) in pancreatic ductal adenocarcinoma (PDAC) drive anabolic metabolism and support tumor maintenance. KRAS* inhibitors show initial antitumor activity followed by recurrence due to cancer cell-intrinsic and immune-mediated paracrine mechanisms. Here, we explored the potential role of cancer-associated fibroblasts (CAFs) in enabling KRAS* bypass and identified CAF-derived NRG1 activation of cancer cell ERBB2 and ERBB3 receptor tyrosine kinases as a mechanism by which KRAS*-independent growth is supported. Genetic extinction or pharmacological inhibition of KRAS* resulted in up-regulation of ERBB2 and ERBB3 expression in human and murine models, which prompted cancer cell utilization of CAF-derived NRG1 as a survival factor. Genetic depletion or pharmacological inhibition of ERBB2/3 or NRG1 abolished KRAS* bypass and synergized with KRASG12D inhibitors in combination treatments in mouse and human PDAC models. Thus, we found that CAFs can contribute to KRAS* inhibitor therapy resistance via paracrine mechanisms, providing an actionable therapeutic strategy to improve the effectiveness of KRAS* inhibitors in PDAC patients.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proliferação de Células , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neuregulina-1/genética , Neuregulina-1/metabolismo
7.
Cell ; 160(5): 928-939, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25723167

RESUMO

Telomerase is required for long-term telomere maintenance and protection. Using single budding yeast mother cell analyses we found that, even early after telomerase inactivation (ETI), yeast mother cells show transient DNA damage response (DDR) episodes, stochastically altered cell-cycle dynamics, and accelerated mother cell aging. The acceleration of ETI mother cell aging was not explained by increased reactive oxygen species (ROS), Sir protein perturbation, or deprotected telomeres. ETI phenotypes occurred well before the population senescence caused late after telomerase inactivation (LTI). They were morphologically distinct from LTI senescence, were genetically uncoupled from telomere length, and were rescued by elevating dNTP pools. Our combined genetic and single-cell analyses show that, well before critical telomere shortening, telomerase is continuously required to respond to transient DNA replication stress in mother cells and that a lack of telomerase accelerates otherwise normal aging.


Assuntos
Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismo , Ciclo Celular , Cromossomos Fúngicos/metabolismo , Replicação do DNA , Mitocôndrias/metabolismo , Ribonucleosídeo Difosfato Redutase/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo
8.
Cell ; 161(6): 1252-65, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26046436

RESUMO

Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.


Assuntos
Descoberta de Drogas , Bibliotecas de Moléculas Pequenas , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , National Institutes of Health (U.S.) , Estados Unidos
10.
Nature ; 619(7970): 632-639, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344599

RESUMO

Sex exerts a profound impact on cancer incidence, spectrum and outcomes, yet the molecular and genetic bases of such sex differences are ill-defined and presumptively ascribed to X-chromosome genes and sex hormones1. Such sex differences are particularly prominent in colorectal cancer (CRC) in which men experience higher metastases and mortality. A murine CRC model, engineered with an inducible transgene encoding oncogenic mutant KRASG12D and conditional null alleles of Apc and Trp53 tumour suppressors (designated iKAP)2, revealed higher metastases and worse outcomes specifically in males with oncogenic mutant KRAS (KRAS*) CRC. Integrated cross-species molecular and transcriptomic analyses identified Y-chromosome gene histone demethylase KDM5D as a transcriptionally upregulated gene driven by KRAS*-mediated activation of the STAT4 transcription factor. KDM5D-dependent chromatin mark and transcriptome changes showed repression of regulators of the epithelial cell tight junction and major histocompatibility complex class I complex components. Deletion of Kdm5d in iKAP cancer cells increased tight junction integrity, decreased cell invasiveness and enhanced cancer cell killing by CD8+ T cells. Conversely, iAP mice engineered with a Kdm5d transgene to provide constitutive Kdm5d expression specifically in iAP cancer cells showed an increased propensity for more invasive tumours in vivo. Thus, KRAS*-STAT4-mediated upregulation of Y chromosome KDM5D contributes substantially to the sex differences in KRAS* CRC by means of its disruption of cancer cell adhesion properties and tumour immunity, providing an actionable therapeutic strategy for metastasis risk reduction for men afflicted with KRAS* CRC.


Assuntos
Neoplasias Colorretais , Histona Desmetilases , Antígenos de Histocompatibilidade Menor , Caracteres Sexuais , Animais , Feminino , Humanos , Masculino , Camundongos , Linfócitos T CD8-Positivos/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Regulação para Cima
11.
Nat Methods ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744918

RESUMO

The combination of native electrospray ionization with top-down fragmentation in mass spectrometry (MS) allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and cofactors. Although this approach is powerful, both native MS and top-down MS are not yet well standardized, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics initiated a study to develop and test protocols for native MS combined with top-down fragmentation of proteins and protein complexes across 11 instruments in nine laboratories. Here we report the summary of the outcomes to provide robust benchmarks and a valuable entry point for the scientific community.

12.
Cell ; 151(6): 1319-31, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23217713

RESUMO

PGC-1α is a transcriptional coactivator induced by exercise that gives muscle many of the best known adaptations to endurance-type exercise but has no effects on muscle strength or hypertrophy. We have identified a form of PGC-1α (PGC-1α4) that results from alternative promoter usage and splicing of the primary transcript. PGC-1α4 is highly expressed in exercised muscle but does not regulate most known PGC-1α targets such as the mitochondrial OXPHOS genes. Rather, it specifically induces IGF1 and represses myostatin, and expression of PGC-1α4 in vitro and in vivo induces robust skeletal muscle hypertrophy. Importantly, mice with skeletal muscle-specific transgenic expression of PGC-1α4 show increased muscle mass and strength and dramatic resistance to the muscle wasting of cancer cachexia. Expression of PGC-1α4 is preferentially induced in mouse and human muscle during resistance exercise. These studies identify a PGC-1α protein that regulates and coordinates factors involved in skeletal muscle hypertrophy.


Assuntos
Proteínas de Choque Térmico/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Treinamento Resistido , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Adiposidade , Animais , Glucose/metabolismo , Humanos , Hipertrofia , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Fibras Musculares Esqueléticas/metabolismo , Miostatina/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Isoformas de Proteínas/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(2): e2310052120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165932

RESUMO

Cross-ecosystem subsidies are critical to ecosystem structure and function, especially in recipient ecosystems where they are the primary source of organic matter to the food web. Subsidies are indicative of processes connecting ecosystems and can couple ecological dynamics across system boundaries. However, the degree to which such flows can induce cross-ecosystem cascades of spatial synchrony, the tendency for system fluctuations to be correlated across locations, is not well understood. Synchrony has destabilizing effects on ecosystems, adding to the importance of understanding spatiotemporal patterns of synchrony transmission. In order to understand whether and how spatial synchrony cascades across the marine-terrestrial boundary via resource subsidies, we studied the relationship between giant kelp forests on rocky nearshore reefs and sandy beach ecosystems that receive resource subsidies in the form of kelp wrack (detritus). We found that synchrony cascades from rocky reefs to sandy beaches, with spatiotemporal patterns mediated by fluctuations in live kelp biomass, wave action, and beach width. Moreover, wrack deposition synchronized local abundances of shorebirds that move among beaches seeking to forage on wrack-associated invertebrates, demonstrating that synchrony due to subsidies propagates across trophic levels in the recipient ecosystem. Synchronizing resource subsidies likely play an underappreciated role in the spatiotemporal structure, functioning, and stability of ecosystems.


Assuntos
Ecossistema , Kelp , Animais , Cadeia Alimentar , Invertebrados , Biomassa , Florestas
14.
Hum Mol Genet ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39323410

RESUMO

Mutations in PSEN1 were first discovered as a cause of Alzheimer's disease (AD) in 1995, yet the mechanism(s) by which the mutations cause disease still remains unknown. The generation of novel mouse models assessing the effects of different mutations could aid in this endeavor. Here we report on transgenic mouse lines made with the Δ440 PSEN1 mutation that causes AD with parkinsonism:- two expressing the un-tagged human protein and two expressing a HA-tagged version. Detailed characterization of these lines showed that Line 305 in particular, which expresses the untagged protein, develops age-dependent memory deficits and pathologic features, many of which are consistent with features found in AD. Key behavioral and physiological alterations found in the novel 305 line included an age-dependent deficit in spontaneous alternations in the Y-maze, a decrease in exploration of the center of an open field box, a decrease in the latency to fall on a rotarod, a reduction in synaptic strength and pair-pulse facilitation by electrophysiology, and profound alterations to cerebral blood flow regulation. The pathologic alterations found in the line included, significant neuronal loss in the hippocampus and cortex, astrogliosis, and changes in several proteins involved in synaptic and mitochondrial function, Ca2+ regulation, and autophagy. Taken together, these findings suggest that the transgenic lines will be useful for the investigation of AD pathogenesis.

15.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38997128

RESUMO

This manuscript describes the development of a resource module that is part of a learning platform named "NIGMS Sandbox for Cloud-based Learning" https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox at the beginning of this Supplement. This module delivers learning materials on RNA sequencing (RNAseq) data analysis in an interactive format that uses appropriate cloud resources for data access and analyses. Biomedical research is increasingly data-driven, and dependent upon data management and analysis methods that facilitate rigorous, robust, and reproducible research. Cloud-based computing resources provide opportunities to broaden the application of bioinformatics and data science in research. Two obstacles for researchers, particularly those at small institutions, are: (i) access to bioinformatics analysis environments tailored to their research; and (ii) training in how to use Cloud-based computing resources. We developed five reusable tutorials for bulk RNAseq data analysis to address these obstacles. Using Jupyter notebooks run on the Google Cloud Platform, the tutorials guide the user through a workflow featuring an RNAseq dataset from a study of prophage altered drug resistance in Mycobacterium chelonae. The first tutorial uses a subset of the data so users can learn analysis steps rapidly, and the second uses the entire dataset. Next, a tutorial demonstrates how to analyze the read count data to generate lists of differentially expressed genes using R/DESeq2. Additional tutorials generate read counts using the Snakemake workflow manager and Nextflow with Google Batch. All tutorials are open-source and can be used as templates for other analysis.


Assuntos
Computação em Nuvem , Biologia Computacional , Análise de Sequência de RNA , Software , Biologia Computacional/métodos , Análise de Sequência de RNA/métodos , Regulação Bacteriana da Expressão Gênica
16.
Brief Bioinform ; 25(Supplement_1)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041914

RESUMO

This manuscript describes the development of a resource module that is part of a learning platform named 'NIGMS Sandbox for Cloud-based Learning' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox at the beginning of this Supplement. This module delivers learning materials on protein quantification in an interactive format that uses appropriate cloud resources for data access and analyses. Quantitative proteomics is a rapidly growing discipline due to the cutting-edge technologies of high resolution mass spectrometry. There are many data types to consider for proteome quantification including data dependent acquisition, data independent acquisition, multiplexing with Tandem Mass Tag reporter ions, spectral counts, and more. As part of the NIH NIGMS Sandbox effort, we developed a learning module to introduce students to mass spectrometry terminology, normalization methods, statistical designs, and basics of R programming. By utilizing the Google Cloud environment, the learning module is easily accessible without the need for complex installation procedures. The proteome quantification module demonstrates the analysis using a provided TMT10plex data set using MS3 reporter ion intensity quantitative values in a Jupyter notebook with an R kernel. The learning module begins with the raw intensities, performs normalization, and differential abundance analysis using limma models, and is designed for researchers with a basic understanding of mass spectrometry and R programming language. Learners walk away with a better understanding of how to navigate Google Cloud Platform for proteomic research, and with the basics of mass spectrometry data analysis at the command line. This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.


Assuntos
Computação em Nuvem , Proteoma , Proteômica , Software , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas , Humanos
17.
Proc Natl Acad Sci U S A ; 120(19): e2222081120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126723

RESUMO

Single-cell proteomics has emerged as a powerful method to characterize cellular phenotypic heterogeneity and the cell-specific functional networks underlying biological processes. However, significant challenges remain in single-cell proteomics for the analysis of proteoforms arising from genetic mutations, alternative splicing, and post-translational modifications. Herein, we have developed a highly sensitive functionally integrated top-down proteomics method for the comprehensive analysis of proteoforms from single cells. We applied this method to single muscle fibers (SMFs) to resolve their heterogeneous functional and proteomic properties at the single-cell level. Notably, we have detected single-cell heterogeneity in large proteoforms (>200 kDa) from the SMFs. Using SMFs obtained from three functionally distinct muscles, we found fiber-to-fiber heterogeneity among the sarcomeric proteoforms which can be related to the functional heterogeneity. Importantly, we detected multiple isoforms of myosin heavy chain (~223 kDa), a motor protein that drives muscle contraction, with high reproducibility to enable the classification of individual fiber types. This study reveals single muscle cell heterogeneity in large proteoforms and establishes a direct relationship between sarcomeric proteoforms and muscle fiber types, highlighting the potential of top-down proteomics for uncovering the molecular underpinnings of cell-to-cell variation in complex systems.


Assuntos
Processamento de Proteína Pós-Traducional , Proteômica , Proteômica/métodos , Reprodutibilidade dos Testes , Isoformas de Proteínas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteoma/metabolismo
18.
PLoS Pathog ; 19(2): e1011156, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36745676

RESUMO

Human adenoviruses (HAdVs) are a large family of DNA viruses counting more than a hundred strains divided into seven species (A to G). HAdVs induce respiratory tract infections, gastroenteritis and conjunctivitis. APOBEC3B is a cytidine deaminase that restricts several DNA viruses. APOBEC3B is also implicated in numerous cancers where it is responsible for the introduction of clustered mutations into the cellular genome. In this study, we demonstrate that APOBEC3B is an adenovirus restriction factor acting through a deaminase-dependent mechanism. APOBEC3B introduces C-to-T clustered mutations into the adenovirus genome. APOBEC3B reduces the propagation of adenoviruses by limiting viral genome replication, progression to late phase, and production of infectious virions. APOBEC3B restriction efficiency varies between adenoviral strains, the A12 strain being more sensitive to APOBEC3B than the B3 or C2 strains. In A12-infected cells, APOBEC3B clusters in the viral replication centers. Importantly, we show that adenovirus infection leads to a reduction of the quantity and/or enzymatic activity of the APOBEC3B protein depending on the strains. The A12 strain seems less able to resist APOBEC3B than the B3 or C2 strains, a characteristic which could explain the strong depletion of the APOBEC3-targeted motifs in the A12 genome. These findings suggest that adenoviruses evolved different mechanisms to antagonize APOBEC3B. Elucidating these mechanisms could benefit the design of cancer treatments. This study also identifies adenoviruses as triggers of the APOBEC3B-mediated innate response. The involvement of certain adenoviral strains in the genesis of the APOBEC3 mutational signature observed in tumors deserves further study.


Assuntos
Infecções por Adenoviridae , Neoplasias , Humanos , Adenoviridae/genética , Adenoviridae/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Proteínas/metabolismo , Neoplasias/patologia , Antígenos de Histocompatibilidade Menor/genética
19.
PLoS Pathog ; 19(2): e1011170, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36802406

RESUMO

Viruses have evolved countless mechanisms to subvert and impair the host innate immune response. Measles virus (MeV), an enveloped, non-segmented, negative-strand RNA virus, alters the interferon response through different mechanisms, yet no viral protein has been described as directly targeting mitochondria. Among the crucial mitochondrial enzymes, 5'-aminolevulinate synthase (ALAS) is an enzyme that catalyzes the first step in heme biosynthesis, generating 5'-aminolevulinate from glycine and succinyl-CoA. In this work, we demonstrate that MeV impairs the mitochondrial network through the V protein, which antagonizes the mitochondrial enzyme ALAS1 and sequesters it to the cytosol. This re-localization of ALAS1 leads to a decrease in mitochondrial volume and impairment of its metabolic potential, a phenomenon not observed in MeV deficient for the V gene. This perturbation of the mitochondrial dynamics demonstrated both in culture and in infected IFNAR-/- hCD46 transgenic mice, causes the release of mitochondrial double-stranded DNA (mtDNA) in the cytosol. By performing subcellular fractionation post infection, we demonstrate that the most significant source of DNA in the cytosol is of mitochondrial origin. Released mtDNA is then recognized and transcribed by the DNA-dependent RNA polymerase III. The resulting double-stranded RNA intermediates will be captured by RIG-I, ultimately initiating type I interferon production. Deep sequencing analysis of cytosolic mtDNA editing divulged an APOBEC3A signature, primarily analyzed in the 5'TpCpG context. Finally, in a negative feedback loop, APOBEC3A an interferon inducible enzyme will orchestrate the catabolism of mitochondrial DNA, decrease cellular inflammation, and dampen the innate immune response.


Assuntos
Interferons , Mitocôndrias , Camundongos , Animais , Mitocôndrias/metabolismo , Vírus do Sarampo , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , DNA Mitocondrial
20.
Mol Psychiatry ; 29(4): 1114-1127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38177353

RESUMO

The discovery that subanesthetic doses of (R, S)-ketamine (ketamine) and (S)-ketamine (esketamine) rapidly induce antidepressant effects and promote sustained actions following drug clearance in depressed patients who are treatment-resistant to other therapies has resulted in a paradigm shift in the conceptualization of how rapidly and effectively depression can be treated. Consequently, the mechanism(s) that next generation antidepressants may engage to improve pathophysiology and resultant symptomology are being reconceptualized. Impaired excitatory glutamatergic synapses in mood-regulating circuits are likely a substantial contributor to the pathophysiology of depression. Metaplasticity is the process of regulating future capacity for plasticity by priming neurons with a stimulation that alters later neuronal plasticity responses. Accordingly, the development of treatment modalities that specifically modulate the duration, direction, or magnitude of glutamatergic synaptic plasticity events such as long-term potentiation (LTP), defined here as metaplastogens, may be an effective approach to reverse the pathophysiology underlying depression and improve depression symptoms. We review evidence that the initiating mechanisms of pharmacologically diverse rapid-acting antidepressants (i.e., ketamine mimetics) converge on consistent downstream molecular mediators that facilitate the expression/maintenance of increased synaptic strength and resultant persisting antidepressant effects. Specifically, while the initiating mechanisms of these therapies may differ (e.g., cell type-specificity, N-methyl-D-aspartate receptor (NMDAR) subtype-selective inhibition vs activation, metabotropic glutamate receptor 2/3 antagonism, AMPA receptor potentiation, 5-HT receptor-activating psychedelics, etc.), the sustained therapeutic mechanisms of putative rapid-acting antidepressants will be mediated, in part, by metaplastic effects that converge on consistent molecular mediators to enhance excitatory neurotransmission and altered capacity for synaptic plasticity. We conclude that the convergence of these therapeutic mechanisms provides the opportunity for metaplasticity processes to be harnessed as a druggable plasticity mechanism by next-generation therapeutics. Further, targeting metaplastic mechanisms presents therapeutic advantages including decreased dosing frequency and associated diminished adverse responses by eliminating the requirement for the drug to be continuously present.


Assuntos
Antidepressivos , Ketamina , Plasticidade Neuronal , Humanos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Plasticidade Neuronal/efeitos dos fármacos , Ketamina/farmacologia , Ketamina/uso terapêutico , Animais , Depressão/tratamento farmacológico , Potenciação de Longa Duração/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA