Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nutr ; 153(3): 645-656, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36931747

RESUMO

BACKGROUND: Plant proteins (PPs) have been associated with better cardiovascular health than animal proteins (APs) in epidemiological studies. However, the underlying metabolic mechanisms remain mostly unknown. OBJECTIVES: Using a combination of cutting-edge isotopic methods, we aimed to better characterize the differences in protein and energy metabolisms induced by dietary protein sources (PP compared with AP) in a prudent or western dietary context. METHODS: Male Wistar rats (n = 44, 8 wk old) were fed for 4.5 mo with isoproteic diets differing in their protein isolate sources, either AP (100% milk) or PP (50%:50% pea: wheat) and being normal (NFS) or high (HFS) in sucrose (6% or 15% kcal) and saturated fat (7% or 20% kcal), respectively. We measured body weight and composition, hepatic enzyme activities and lipid content, and plasma metabolites. In the intestine, liver, adipose tissues, and skeletal muscles, we concomitantly assessed the extent of amino acid (AA) trafficking using a 15N natural abundance method, the rates of macronutrient routing to dispensable AA using a 13C natural abundance method, and the metabolic fluxes of protein synthesis (PS) and de novo lipogenesis using a 2H labeling method. Data were analyzed using ANOVA and Mixed models. RESULTS: At the whole-body level, PP limited HFS-induced insulin resistance (-27% in HOMA-IR between HFS groups, P < 0.05). In the liver, PP induced lower lipid content (-17%, P < 0.01) and de novo lipogenesis (-24%, P < 0.05). In the different tissues studied, PP induced higher AA transamination accompanied by higher routings of dietary carbohydrates and lipids toward dispensable AA synthesis by glycolysis and ß-oxidation, resulting in similar tissue PS and protein mass. CONCLUSIONS: In growing rats, compared with AP, a balanced blend of PP similarly supports protein anabolism while better limiting whole-body and tissue metabolic dysregulations through mechanisms related to their less optimal AA profile for direct channeling to PS.


Assuntos
Proteínas de Ervilha , Ratos , Animais , Proteínas de Ervilha/metabolismo , Proteínas do Leite/farmacologia , Proteínas do Leite/metabolismo , Triticum , Sacarose , Dieta Hiperlipídica , Ratos Wistar , Fígado/metabolismo , Aminoácidos/metabolismo , Proteínas Alimentares/metabolismo , Lipídeos
2.
Nutrients ; 14(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35276829

RESUMO

This review focuses on the added value provided by a research strategy applying metabolomics analyses to assess phenotypic flexibility in response to different nutritional challenge tests in the framework of metabolic clinical studies. We discuss findings related to the Oral Glucose Tolerance Test (OGTT) and to mixed meals with varying fat contents and food matrix complexities. Overall, the use of challenge tests combined with metabolomics revealed subtle metabolic dysregulations exacerbated during the postprandial period when comparing healthy and at cardiometabolic risk subjects. In healthy subjects, consistent postprandial metabolic shifts driven by insulin action were reported (e.g., a switch from lipid to glucose oxidation for energy fueling) with similarities between OGTT and mixed meals, especially during the first hours following meal ingestion while differences appeared in a wider timeframe. In populations with expected reduced phenotypic flexibility, often associated with increased cardiometabolic risk, a blunted response on most key postprandial pathways was reported. We also discuss the most suitable statistical tools to analyze the dynamic alterations of the postprandial metabolome while accounting for complexity in study designs and data structure. Overall, the in-depth characterization of the postprandial metabolism and associated phenotypic flexibility appears highly promising for a better understanding of the onset of cardiometabolic diseases.


Assuntos
Doenças Cardiovasculares , Período Pós-Prandial , Doenças Cardiovasculares/etiologia , Teste de Tolerância a Glucose , Humanos , Refeições , Metaboloma , Período Pós-Prandial/fisiologia
3.
Adv Nutr ; 12(6): 2112-2131, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229350

RESUMO

The dietary shift from animal protein (AP) to plant protein (PP) sources is encouraged for both environmental and health reasons. For instance, PPs are associated with lower cardiovascular and diabetes risks compared with APs, although the underlying mechanisms mostly remain unknown. Metabolomics is a valuable tool for globally and mechanistically characterizing the impact of AP and PP intake, given its unique ability to provide integrated signatures and specific biomarkers of metabolic effects through a comprehensive snapshot of metabolic status. This scoping review is aimed at gathering and analyzing the available metabolomics data associated with PP- and AP-rich diets, and discusses the metabolic effects underlying these metabolomics signatures and their potential implication for cardiometabolic health. We selected 24 human studies comparing the urine, plasma, or serum metabolomes associated with diets with contrasted AP and PP intakes. Among the 439 metabolites reported in those studies as able to discriminate AP- and PP-rich diets, 46 were considered to provide a robust level of evidence, according to a scoring system, especially amino acids (AAs) and AA-related products. Branched-chain amino acids, aromatic amino acids (AAAs), glutamate, short-chain acylcarnitines, and trimethylamine-N-oxide, which are known to be related to an increased cardiometabolic risk, were associated with AP-rich diets, whereas glycine (rather related to a reduced risk) was associated with PP-rich diets. Tricarboxylic acid (TCA) cycle intermediates and products from gut microbiota AAA degradation were also often reported, but the direction of their associations differed across studies. Overall, AP- and PP-rich diets result in different metabolomics signatures, with several metabolites being plausible candidates to explain some of their differential associations with cardiometabolic risk. Additional studies specifically focusing on protein type, with rigorous intake control, are needed to better characterize the associated metabolic phenotypes and understand how they could mediate differential AP and PP effects on cardiometabolic risk.


Assuntos
Doenças Cardiovasculares , Proteínas de Plantas , Animais , Biomarcadores , Dieta , Humanos , Metabolômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA