Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(7997): 194-206, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096902

RESUMO

The LINE-1 (L1) retrotransposon is an ancient genetic parasite that has written around one-third of the human genome through a 'copy and paste' mechanism catalysed by its multifunctional enzyme, open reading frame 2 protein (ORF2p)1. ORF2p reverse transcriptase (RT) and endonuclease activities have been implicated in the pathophysiology of cancer2,3, autoimmunity4,5 and ageing6,7, making ORF2p a potential therapeutic target. However, a lack of structural and mechanistic knowledge has hampered efforts to rationally exploit it. We report structures of the human ORF2p 'core' (residues 238-1061, including the RT domain) by X-ray crystallography and cryo-electron microscopy in several conformational states. Our analyses identified two previously undescribed folded domains, extensive contacts to RNA templates and associated adaptations that contribute to unique aspects of the L1 replication cycle. Computed integrative structural models of full-length ORF2p show a dynamic closed-ring conformation that appears to open during retrotransposition. We characterize ORF2p RT inhibition and reveal its underlying structural basis. Imaging and biochemistry show that non-canonical cytosolic ORF2p RT activity can produce RNA:DNA hybrids, activating innate immune signalling through cGAS/STING and resulting in interferon production6-8. In contrast to retroviral RTs, L1 RT is efficiently primed by short RNAs and hairpins, which probably explains cytosolic priming. Other biochemical activities including processivity, DNA-directed polymerization, non-templated base addition and template switching together allow us to propose a revised L1 insertion model. Finally, our evolutionary analysis demonstrates structural conservation between ORF2p and other RNA- and DNA-dependent polymerases. We therefore provide key mechanistic insights into L1 polymerization and insertion, shed light on the evolutionary history of L1 and enable rational drug development targeting L1.


Assuntos
Endonucleases , Elementos Nucleotídeos Longos e Dispersos , DNA Polimerase Dirigida por RNA , Transcrição Reversa , Humanos , Microscopia Crioeletrônica , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , RNA/genética , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Cristalografia por Raios X , DNA/biossíntese , DNA/genética , Imunidade Inata , Interferons/biossíntese
2.
Cell ; 155(5): 1034-48, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24267889

RESUMO

LINE-1s are active human DNA parasites that are agents of genome dynamics in evolution and disease. These streamlined elements require host factors to complete their life cycles, whereas hosts have developed mechanisms to combat retrotransposition's mutagenic effects. As such, endogenous L1 expression levels are extremely low, creating a roadblock for detailed interactomic analyses. Here, we describe a system to express and purify highly active L1 RNP complexes from human suspension cell culture and characterize the copurified proteome, identifying 37 high-confidence candidate interactors. These data sets include known interactors PABPC1 and MOV10 and, with in-cell imaging studies, suggest existence of at least three types of compositionally and functionally distinct L1 RNPs. Among the findings, UPF1, a key nonsense-mediated decay factor, and PCNA, the polymerase-delta-associated sliding DNA clamp, were identified and validated. PCNA interacts with ORF2p via a PIP box motif; mechanistic studies suggest that this occurs during or immediately after target-primed reverse transcription.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Proteoma/análise , Ribonucleoproteínas/análise , Sequência de Aminoácidos , Animais , Regulação para Baixo , Genoma Humano , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Fases de Leitura Aberta , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/isolamento & purificação , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Helicases , Ribonucleoproteínas/isolamento & purificação , Alinhamento de Sequência , Transativadores/química , Transativadores/isolamento & purificação , Transativadores/metabolismo
3.
Genes Dev ; 32(17-18): 1226-1241, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108131

RESUMO

GTP-binding protein 1 (GTPBP1) and GTPBP2 comprise a divergent group of translational GTPases with obscure functions, which are most closely related to eEF1A, eRF3, and Hbs1. Although recent reports implicated GTPBPs in mRNA surveillance and ribosome-associated quality control, how they perform these functions remains unknown. Here, we demonstrate that GTPBP1 possesses eEF1A-like elongation activity, delivering cognate aminoacyl-transfer RNA (aa-tRNA) to the ribosomal A site in a GTP-dependent manner. It also stimulates exosomal degradation of mRNAs in elongation complexes. The kinetics of GTPBP1-mediated elongation argues against its functioning in elongation per se but supports involvement in mRNA surveillance. Thus, GTP hydrolysis by GTPBP1 is not followed by rapid peptide bond formation, suggesting that after hydrolysis, GTPBP1 retains aa-tRNA, delaying its accommodation in the A site. In physiological settings, this would cause ribosome stalling, enabling GTPBP1 to elicit quality control programs; e.g., by recruiting the exosome. GTPBP1 can also deliver deacylated tRNA to the A site, indicating that it might function via interaction with deacylated tRNA, which accumulates during stresses. Although GTPBP2's binding to GTP was stimulated by Phe-tRNAPhe, suggesting that its function might also involve interaction with aa-tRNA, GTPBP2 lacked elongation activity and did not stimulate exosomal degradation, indicating that GTPBP1 and GTPBP2 have different functions.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/metabolismo , Elongação Traducional da Cadeia Peptídica , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35169076

RESUMO

Retrotransposons are genomic DNA sequences that copy themselves to new genomic locations via RNA intermediates; LINE-1 is the only active and autonomous retrotransposon in the human genome. The mobility of LINE-1 is largely repressed in somatic tissues but is derepressed in many cancers, where LINE-1 retrotransposition is correlated with p53 mutation and copy number alteration (CNA). In cell lines, inducing LINE-1 expression can cause double-strand breaks (DSBs) and replication stress. Reanalyzing multiomic data from breast, ovarian, endometrial, and colon cancers, we confirmed correlations between LINE-1 expression, p53 mutation status, and CNA. We observed a consistent correlation between LINE-1 expression and the abundance of DNA replication complex components, indicating that LINE-1 may also induce replication stress in human tumors. In endometrial cancer, high-quality phosphoproteomic data allowed us to identify the DSB-induced ATM-MRN-SMC S phase checkpoint pathway as the primary DNA damage response (DDR) pathway associated with LINE-1 expression. Induction of LINE-1 expression in an in vitro model led to increased phosphorylation of MRN complex member RAD50, suggesting that LINE-1 directly activates this pathway.


Assuntos
Variações do Número de Cópias de DNA/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Proteína Supressora de Tumor p53/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Bases de Dados Genéticas , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Elementos Nucleotídeos Longos e Dispersos/fisiologia , Neoplasias/genética , Proteínas Nucleares/metabolismo , Proteínas/genética , Proteínas/metabolismo , Retroelementos/genética , Pontos de Checagem da Fase S do Ciclo Celular/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Nucleic Acids Res ; 48(18): 10413-10427, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32960271

RESUMO

The nuclear Cap-Binding Complex (CBC), consisting of Nuclear Cap-Binding Protein 1 (NCBP1) and 2 (NCBP2), associates with the nascent 5'cap of RNA polymerase II transcripts and impacts RNA fate decisions. Recently, the C17orf85 protein, also called NCBP3, was suggested to form an alternative CBC by replacing NCBP2. However, applying protein-protein interaction screening of NCBP1, 2 and 3, we find that the interaction profile of NCBP3 is distinct. Whereas NCBP1 and 2 identify known CBC interactors, NCBP3 primarily interacts with components of the Exon Junction Complex (EJC) and the TRanscription and EXport (TREX) complex. NCBP3-EJC association in vitro and in vivo requires EJC core integrity and the in vivo RNA binding profiles of EJC and NCBP3 overlap. We further show that NCBP3 competes with the RNA degradation factor ZC3H18 for binding CBC-bound transcripts, and that NCBP3 positively impacts the nuclear export of polyadenylated RNAs and the expression of large multi-exonic transcripts. Collectively, our results place NCBP3 with the EJC and TREX complexes in supporting mRNA expression.


Assuntos
RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , RNA/genética , Transcrição Gênica , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/genética , Éxons , Regulação da Expressão Gênica/genética , Humanos , Complexo Proteico Nuclear de Ligação ao Cap/genética , Proteínas de Ligação ao Cap de RNA/genética , RNA Polimerase II/genética , Estabilidade de RNA/genética , Transporte de RNA/genética , Fatores de Transcrição/genética
6.
Nucleic Acids Res ; 48(18): 10456-10469, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32960270

RESUMO

A 5',7-methylguanosine cap is a quintessential feature of RNA polymerase II-transcribed RNAs, and a textbook aspect of co-transcriptional RNA processing. The cap is bound by the cap-binding complex (CBC), canonically consisting of nuclear cap-binding proteins 1 and 2 (NCBP1/2). Interest in the CBC has recently renewed due to its participation in RNA-fate decisions via interactions with RNA productive factors as well as with adapters of the degradative RNA exosome. A novel cap-binding protein, NCBP3, was recently proposed to form an alternative CBC together with NCBP1, and to interact with the canonical CBC along with the protein SRRT. The theme of post-transcriptional RNA fate, and how it relates to co-transcriptional ribonucleoprotein assembly, is abundant with complicated, ambiguous, and likely incomplete models. In an effort to clarify the compositions of NCBP1-, 2- and 3-related macromolecular assemblies, we have applied an affinity capture-based interactome screen where the experimental design and data processing have been modified to quantitatively identify interactome differences between targets under a range of experimental conditions. This study generated a comprehensive view of NCBP-protein interactions in the ribonucleoprotein context and demonstrates the potential of our approach to benefit the interpretation of complex biological pathways.


Assuntos
Complexo Proteico Nuclear de Ligação ao Cap/genética , Proteínas Nucleares/genética , Proteoma/genética , Proteínas de Ligação ao Cap de RNA/genética , Citoplasma/imunologia , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Humanos , Proteômica/métodos , Capuzes de RNA/genética , RNA Polimerase II/genética
7.
J Proteome Res ; 19(5): 1900-1912, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163288

RESUMO

A Think-Tank Meeting was convened by the National Cancer Institute (NCI) to solicit experts' opinion on the development and application of multiomic single-cell analyses, and especially single-cell proteomics, to improve the development of a new generation of biomarkers for cancer risk, early detection, diagnosis, and prognosis as well as to discuss the discovery of new targets for prevention and therapy. It is anticipated that such markers and targets will be based on cellular, subcellular, molecular, and functional aberrations within the lesion and within individual cells. Single-cell proteomic data will be essential for the establishment of new tools with searchable and scalable features that include spatial and temporal cartographies of premalignant and malignant lesions. Challenges and potential solutions that were discussed included (i) The best way/s to analyze single-cells from fresh and preserved tissue; (ii) Detection and analysis of secreted molecules and from single cells, especially from a tissue slice; (iii) Detection of new, previously undocumented cell type/s in the premalignant and early stage cancer tissue microenvironment; (iv) Multiomic integration of data to support and inform proteomic measurements; (v) Subcellular organelles-identifying abnormal structure, function, distribution, and location within individual premalignant and malignant cells; (vi) How to improve the dynamic range of single-cell proteomic measurements for discovery of differentially expressed proteins and their post-translational modifications (PTM); (vii) The depth of coverage measured concurrently using single-cell techniques; (viii) Quantitation - absolute or semiquantitative? (ix) Single methodology or multiplexed combinations? (x) Application of analytical methods for identification of biologically significant subsets; (xi) Data visualization of N-dimensional data sets; (xii) How to construct intercellular signaling networks in individual cells within premalignant tumor microenvironments (TME); (xiii) Associations between intrinsic cellular processes and extrinsic stimuli; (xiv) How to predict cellular responses to stress-inducing stimuli; (xv) Identification of new markers for prediction of progression from precursor, benign, and localized lesions to invasive cancer, based on spatial and temporal changes within individual cells; (xvi) Identification of new targets for immunoprevention or immunotherapy-identification of neoantigens and surfactome of individual cells within a lesion.


Assuntos
Vacinas Anticâncer , Neoplasias , Biomarcadores , Biomarcadores Tumorais/genética , Imunoterapia , National Cancer Institute (U.S.) , Proteômica , Estados Unidos
8.
Nat Methods ; 12(6): 553-60, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25938370

RESUMO

We must reliably map the interactomes of cellular macromolecular complexes in order to fully explore and understand biological systems. However, there are no methods to accurately predict how to capture a given macromolecular complex with its physiological binding partners. Here, we present a screening method that comprehensively explores the parameters affecting the stability of interactions in affinity-captured complexes, enabling the discovery of physiological binding partners in unparalleled detail. We have implemented this screen on several macromolecular complexes from a variety of organisms, revealing novel profiles for even well-studied proteins. Our approach is robust, economical and automatable, providing inroads to the rigorous, systematic dissection of cellular interactomes.


Assuntos
Substâncias Macromoleculares/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Linhagem Celular , Escherichia coli , Humanos , Mapas de Interação de Proteínas , Proteínas/metabolismo , Proteômica/métodos , Leveduras
9.
RNA ; 22(9): 1467-75, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27402899

RESUMO

As a result of its importance in key RNA metabolic processes, the ribonucleolytic RNA exosome complex has been the focus of intense study for almost two decades. Research on exosome subunit assembly, cofactor and substrate interaction, enzymatic catalysis and structure have largely been conducted using complexes produced in the yeast Saccharomyces cerevisiae or in bacteria. Here, we examine different populations of endogenous exosomes from human embryonic kidney (HEK) 293 cells and test their enzymatic activity and structural integrity. We describe methods to prepare EXOSC10-containing, enzymatically active endogenous human exosomes at suitable yield and purity for in vitro biochemistry and negative stain transmission electron microscopy. This opens the door for assays designed to test the in vitro effects of putative cofactors on human exosome activity and will enable structural studies of preparations from endogenous sources.


Assuntos
Exossomos/química , Exossomos/metabolismo , Células HEK293 , Humanos , RNA Mensageiro/química , RNA Mensageiro/metabolismo
11.
Biotechniques ; 76(4): 145-152, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425263

RESUMO

Immunoprecipitation (IP) coupled with mass spectrometry effectively maps protein-protein interactions when genome-wide, affinity-tagged cell collections are used. Such studies have recorded significant portions of the compositions of physiological protein complexes, providing draft 'interactomes'; yet many constituents of protein complexes still remain uncharted. This gap exists partly because high-throughput approaches cannot optimize each IP. A key challenge for IP optimization is stabilizing in vivo interactions during the transfer from cells to test tubes; failure to do so leads to the loss of genuine interactions during the IP and subsequent failure to detect. Our high-content screening method explores the relationship between in vitro chemical conditions and IP outcomes, enabling rapid empirical optimization of conditions for capturing target macromolecular assemblies.


Assuntos
Espectrometria de Massas , Espectrometria de Massas/métodos , Imunoprecipitação
12.
Mob DNA ; 15(1): 14, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937837

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with an unpredictable course of recurrent exacerbations alternating with more stable disease. SLE is characterized by broad immune activation and autoantibodies against double-stranded DNA and numerous proteins that exist in cells as aggregates with nucleic acids, such as Ro60, MOV10, and the L1 retrotransposon-encoded ORF1p. RESULTS: Here we report that these 3 proteins are co-expressed and co-localized in a subset of SLE granulocytes and are concentrated in cytosolic dots that also contain DNA: RNA heteroduplexes and the DNA sensor ZBP1, but not cGAS. The DNA: RNA heteroduplexes vanished from the neutrophils when they were treated with a selective inhibitor of the L1 reverse transcriptase. We also report that ORF1p granules escape neutrophils during the extrusion of neutrophil extracellular traps (NETs) and, to a lesser degree, from neutrophils dying by pyroptosis, but not apoptosis. CONCLUSIONS: These results bring new insights into the composition of ORF1p granules in SLE neutrophils and may explain, in part, why proteins in these granules become targeted by autoantibodies in this disease.

13.
Commun Biol ; 7(1): 77, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200184

RESUMO

CCDC88B is a risk factor for several chronic inflammatory diseases in humans and its inactivation causes a migratory defect in DCs in mice. CCDC88B belongs to a family of cytoskeleton-associated scaffold proteins that feature protein:protein interaction domains. Here, we identified the Rho/Rac Guanine Nucleotide Exchange Factor 2 (ARHGEF2) and the RAS Protein Activator Like 3 (RASAL3) as CCDC88B physical and functional interactors. Mice defective in Arhgef2 or Rasal3 show dampened neuroinflammation, and display altered cellular response and susceptibility to colitis; ARHGEF2 maps to a human Chromosome 1 locus associated with susceptibility to IBD. Arhgef2 and Rasal3 mutant DCs show altered migration and motility in vitro, causing either reduced (Arhgef2) or enhanced (Rasal3) migratory properties. The CCDC88B/RASAL3/ARHGEF2 complex appears to regulate DCs migration by modulating activation of RHOA, with ARHGEF2 and RASAL3 acting in opposite regulatory fashions, providing a molecular mechanism for the involvement of these proteins in DCs immune functions.


Assuntos
Colite , Doenças Neuroinflamatórias , Animais , Humanos , Camundongos , Fenômenos Fisiológicos Celulares , Colite/genética , Citoesqueleto , Células Dendríticas , Fatores de Troca de Nucleotídeo Guanina Rho/genética
14.
J Chromatogr A ; 1705: 464179, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37419018

RESUMO

Low-molecular-weight heparins (LMWHs) are important anticoagulants widely used in clinic. Since they are comprised of complex and heterogenous glycan chains, liquid chromatography-tandem mass spectrometry (LC-MS) is commonly used for structural analysis and quality control of LMWHs to ensure their safety and efficacy. Yet, the structural complexity arising from the parent heparin macromolecules, as well as the different depolymerization methods used for preparing LMWHs, makes processing and assigning the LC-MS data of LWMHs very tedious and challenging. We therefore developed, and here report, an open-source and easy-to-use web application, MsPHep, to facilitate the LMWH analysis based on LC-MS data. MsPHep is compatible with various LMWHs and chromatographic separation methods. With the HepQual function, MsPHep is capable of annotating both the LMWH compound and its isotopic distribution from mass spectra. Moreover, the HepQuant function enables automatic quantification of LMWH compositions without prior knowledge or any database generation. To demonstrate the reliability and system stability of MsPHep, we tested various types of LMWHs that were analyzed with different chromatographic methods coupled to MS. The results show that MsPHep has its own advantages compared to another public tool GlycReSoft for LMWH analysis, and it is available online under an open-source license at https://ngrc-glycan.shinyapps.io/MsPHep.


Assuntos
Heparina de Baixo Peso Molecular , Espectrometria de Massas em Tandem , Heparina de Baixo Peso Molecular/química , Reprodutibilidade dos Testes , Anticoagulantes/química , Cromatografia Líquida , Heparina/química , Peso Molecular
15.
Methods Mol Biol ; 2607: 215-256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36449166

RESUMO

During their proliferation and the host's concomitant attempts to suppress it, LINE-1 (L1) retrotransposons give rise to a collection of heterogeneous ribonucleoproteins (RNPs); their protein and RNA compositions remain poorly defined. The constituents of L1-associated macromolecules can differ depending on numerous factors, including, for example, position within the L1 life cycle, whether the macromolecule is productive or under suppression, and the cell type within which the proliferation is occurring. This chapter describes techniques that aid the capture and characterization of protein and RNA components of L1 macromolecules from tissues that natively express them. The protocols described have been applied to embryonal carcinoma cell lines that are popular model systems for L1 molecular biology (e.g., N2102Ep, NTERA-2, and PA-1 cells), as well as colorectal cancer tissues. N2102Ep cells are given as the use case for this chapter; the protocols should be applicable to essentially any tissue exhibiting endogenous L1 expression with minor modifications.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Retroelementos , Substâncias Macromoleculares , Células-Tronco de Carcinoma Embrionário , RNA
16.
Mob DNA ; 14(1): 5, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165451

RESUMO

BACKGROUND: Patients with systemic lupus erythematosus (SLE) have autoantibodies against the L1-encoded open-reading frame 1 protein (ORF1p). Here, we report (i) which immune cells ORF1p emanates from, (ii) which L1 loci are transcriptionally active, (iii) whether the cells express L1-dependent interferon and interferon-stimulated genes, and (iv) the effect of inhibition of L1 ORF2p by reverse transcriptase inhibitors. RESULTS: L1 ORF1p was detected by flow cytometry primarily in SLE CD66b+CD15+ regular and low-density granulocytes, but much less in other immune cell lineages. The amount of ORF1p was higher in neutrophils from patients with SLE disease activity index (SLEDAI) > 6 (p = 0.011) compared to patients with inactive disease, SLEDAI < 4. Patient neutrophils transcribed seven to twelve human-specific L1 loci (L1Hs), but only 3 that are full-length and with an intact ORF1. Besides serving as a source of detectable ORF1p, the most abundant transcript encoded a truncated ORF2p reverse transcriptase predicted to remain cytosolic, while the two other encoded an intact full-length ORF2p. A number of genes encoding proteins that influence L1 transcription positively or negatively were altered in patients, particularly those with active disease, compared to healthy controls. Components of nucleic acid sensing and interferon induction were also altered. SLE neutrophils also expressed type I interferon-inducible genes and interferon ß, which were substantially reduced after treatment of the cells with drugs known to inhibit ORF2p reverse transcriptase activity. CONCLUSIONS: We identified L1Hs loci that are transcriptionally active in SLE neutrophils, and a reduction in the epigenetic silencing mechanisms that normally counteract L1 transcription. SLE neutrophils contained L1-encoded ORF1p protein, as well as activation of the type I interferon system, which was inhibited by treatment with reverse transcriptase inhibitors. Our findings will enable a deeper analysis of L1 dysregulation and its potential role in SLE pathogenesis.

17.
Cell Genom ; 3(11): 100419, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38020974

RESUMO

We describe the complete synthesis, assembly, debugging, and characterization of a synthetic 404,963 bp chromosome, synIX (synthetic chromosome IX). Combined chromosome construction methods were used to synthesize and integrate its left arm (synIXL) into a strain containing previously described synIXR. We identified and resolved a bug affecting expression of EST3, a crucial gene for telomerase function, producing a synIX strain with near wild-type fitness. To facilitate future synthetic chromosome consolidation and increase flexibility of chromosome transfer between distinct strains, we combined chromoduction, a method to transfer a whole chromosome between two strains, with conditional centromere destabilization to substitute a chromosome of interest for its native counterpart. Both steps of this chromosome substitution method were efficient. We observed that wild-type II tended to co-transfer with synIX and was co-destabilized with wild-type IX, suggesting a potential gene dosage compensation relationship between these chromosomes.

18.
bioRxiv ; 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37292765

RESUMO

Overexpression of repetitive elements is an emerging hallmark of human cancers 1 . Diverse repeats can mimic viruses by replicating within the cancer genome through retrotransposition, or presenting pathogen-associated molecular patterns (PAMPs) to the pattern recognition receptors (PRRs) of the innate immune system 2-5 . Yet, how specific repeats affect tumor evolution and shape the tumor immune microenvironment (TME) in a pro- or anti-tumorigenic manner remains poorly defined. Here, we integrate whole genome and total transcriptome data from a unique autopsy cohort of multiregional samples collected in pancreatic ductal adenocarcinoma (PDAC) patients, into a comprehensive evolutionary analysis. We find that more recently evolved S hort I nterspersed N uclear E lements (SINE), a family of retrotransposable repeats, are more likely to form immunostimulatory double-strand RNAs (dsRNAs). Consequently, younger SINEs are strongly co-regulated with RIG-I like receptor associated type-I interferon genes but anti-correlated with pro-tumorigenic macrophage infiltration. We discover that immunostimulatory SINE expression in tumors is regulated by either L ong I nterspersed N uclear E lements 1 (LINE1/L1) mobility or ADAR1 activity in a TP53 mutation dependent manner. Moreover, L1 retrotransposition activity tracks with tumor evolution and is associated with TP53 mutation status. Altogether, our results suggest pancreatic tumors actively evolve to modulate immunogenic SINE stress and induce pro-tumorigenic inflammation. Our integrative, evolutionary analysis therefore illustrates, for the first time, how dark matter genomic repeats enable tumors to co-evolve with the TME by actively regulating viral mimicry to their selective advantage.

19.
Elife ; 112022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35200138

RESUMO

A loss of the checkpoint kinase ataxia telangiectasia mutated (ATM) leads to impairments in the DNA damage response, and in humans causes cerebellar neurodegeneration, and an increased risk of cancer. A loss of ATM is also associated with increased protein aggregation. The relevance and characteristics of this aggregation are still incompletely understood. Moreover, it is unclear to what extent other genotoxic conditions can trigger protein aggregation as well. Here, we show that targeting ATM, but also ATR or DNA topoisomerases, results in the widespread aggregation of a metastable, disease-associated subfraction of the proteome. Aggregation-prone model substrates, including Huntingtin exon 1 containing an expanded polyglutamine repeat, aggregate faster under these conditions. This increased aggregation results from an overload of chaperone systems, which lowers the cell-intrinsic threshold for proteins to aggregate. In line with this, we find that inhibition of the HSP70 chaperone system further exacerbates the increased protein aggregation. Moreover, we identify the molecular chaperone HSPB5 as a cell-specific suppressor of it. Our findings reveal that various genotoxic conditions trigger widespread protein aggregation in a manner that is highly reminiscent of the aggregation occurring in situations of proteotoxic stress and in proteinopathies.


Cells are constantly perceiving and responding to changes in their surroundings, and challenging conditions such as extreme heat or toxic chemicals can put cells under stress. When this happens, protein production can be affected. Proteins are long chains of chemical building blocks called amino acids, and they can only perform their roles if they fold into the right shape. Some proteins fold easily and remain folded, but others can be unstable and often become misfolded. Unfolded proteins can become a problem because they stick to each other, forming large clumps called aggregates that can interfere with the normal activity of cells, causing damage. The causes of stress that have a direct effect on protein folding are called proteotoxic stresses, and include, for example, high temperatures, which make proteins more flexible and unstable, increasing their chances of becoming unfolded. To prevent proteins becoming misfolded, cells can make 'protein chaperones', a type of proteins that help other proteins fold correctly and stay folded. The production of protein chaperones often increases in response to proteotoxic stress. However, there are other types of stress too, such as genotoxic stress, which damages DNA. It is unclear what effect genotoxic stress has on protein folding. Huiting et al. studied protein folding during genotoxic stress in human cells grown in the lab. Stress was induced by either blocking the proteins that repair DNA or by 'trapping' the proteins that release DNA tension, both of which result in DNA damage. The analysis showed that, similar to the effects of proteotoxic stress, genotoxic stress increased the number of proteins that aggregate, although certain proteins formed aggregates even without stress, particularly if they were common and relatively unstable proteins. Huiting et al.'s results suggest that aggregation increases in cells under genotoxic stress because the cells fail to produce enough chaperones to effectively fold all the proteins that need it. Indeed, Huiting et al. showed that aggregates contain many proteins that rely on chaperones, and that increasing the number of chaperones in stressed cells reduced protein aggregation. This work shows that genotoxic stress can affect protein folding by limiting the availability of chaperones, which increases protein aggregation. Remarkably, there is a substantial overlap between proteins that aggregate in diseases that affect the brain ­ such as Alzheimer's disease ­ and proteins that aggregate after genotoxic stress. Therefore, further research could focus on determining whether genotoxic stress is involved in the progression of these neurological diseases.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , DNA Topoisomerases/metabolismo , Chaperonas Moleculares/metabolismo , Dano ao DNA , Células HEK293 , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Peptídeos/metabolismo , Agregados Proteicos , Dobramento de Proteína , Proteoma/metabolismo , Cadeia B de alfa-Cristalina/metabolismo
20.
Arthritis Res Ther ; 23(1): 153, 2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051843

RESUMO

BACKGROUND: Most patients with systemic lupus erythematosus (SLE) have IgG autoantibodies against the RNA-binding p40 (ORF1p) protein encoded by the L1 retroelement. This study tested if these autoantibodies are also present in children with pediatric SLE (pSLE) and if the p40 protein itself could be detected in immune cells. METHODS: Autoantibodies in the plasma of pSLE patients (n = 30), healthy children (n = 37), and disease controls juvenile idiopathic arthritis (JIA) (n = 32) and juvenile dermatomyositis (JDM) (n = 60), were measured by ELISA. Expression of p40 in immune cells was assessed by flow cytometry. Markers of neutrophil activation and death were quantitated by ELISA. RESULTS: IgG and IgA autoantibodies reactive with p40 were detected in the pSLE patients, but were low in healthy controls and in JIA or JDM. pSLE patients with active disease (13 of them newly diagnosed) had higher titers than the same patients after effective therapy (p = 0.0003). IgG titers correlated with SLEDAI (r = 0.65, p = 0.0001), ESR (r = 0.43, p = 0.02), and anti-dsDNA antibodies (r = 0.49, p < 0.03), and inversely with complement C3 (r = -0.55, p = 0.002) and C4 (r = -0.51, p = 0.006). p40 protein was detected in a subpopulation of CD66b+ granulocytes in pSLE, as well as in adult SLE patients. Myeloperoxidase and neutrophil elastase complexed with DNA and the neutrophil-derived S100A8/A9 were elevated in plasma from pSLE patients with active disease and correlated with anti-p40 autoantibodies and disease activity. CONCLUSIONS: Children with active SLE have elevated IgG and IgA autoantibodies against L1 p40, and this protein can be detected in circulating granulocytes in both pediatric and adult SLE patients. P40 expression and autoantibody levels correlate with disease activity. Markers of neutrophil activation and death also correlate with these autoantibodies and with disease activity, suggesting that neutrophils express L1 and are a source of p40.


Assuntos
Lúpus Eritematoso Sistêmico , Adulto , Autoanticorpos , Criança , Humanos , Imunoglobulina A , Imunoglobulina G , Neutrófilos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA