Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 13(7): 884-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25572960

RESUMO

There is an urgent need to provide effective anti-HIV microbicides to resource-poor areas worldwide. Some of the most promising microbicide candidates are biotherapeutics targeting viral entry. To provide biotherapeutics to poorer areas, it is vital to reduce the cost. Here, we report the production of biologically active recombinant cyanovirin-N (rCV-N), an antiviral protein, in genetically engineered soya bean seeds. Pure, biologically active rCV-N was isolated with a yield of 350 µg/g of dry seed weight. The observed amino acid sequence of rCV-N matched the expected sequence of native CV-N, as did the mass of rCV-N (11 009 Da). Purified rCV-N from soya is active in anti-HIV assays with an EC50 of 0.82-2.7 nM (compared to 0.45-1.8 nM for E. coli-produced CV-N). Standard industrial processing of soya bean seeds to harvest soya bean oil does not diminish the antiviral activity of recovered rCV-N, allowing the use of industrial soya bean processing to generate both soya bean oil and a recombinant protein for anti-HIV microbicide development.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Transporte/biossíntese , Glycine max/genética , Engenharia de Proteínas , Sementes/genética , Fármacos Anti-HIV , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Sementes/metabolismo , Glycine max/metabolismo
2.
Nanoscale ; 7(14): 6238-46, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25776264

RESUMO

Candida albicans is a common human-pathogenic fungal species with the ability to cause several diseases including surface infections. Despite the clear difficulties of Candida control, antimicrobial peptides (AMPs) have emerged as an alternative strategy for fungal control. In this report, different concentrations of antifungal Cm-p1 (Cencritchis muricatus peptide 1) were electrospun into nanofibers for drug delivery. The nanofibers were characterized by mass spectrometry confirming the presence of the peptide on the scaffold. Atomic force microscopy and scanning electronic microscopy were used to measure the diameters, showing that Cm-p1 affects fiber morphology as well as the diameter and scaffold thickness. The Cm-p1 release behavior from the nanofibers demonstrated peptide release from 30 min to three days, leading to effective yeast control in the first 24 hours. Moreover, the biocompatibility of the fibers were evaluated through a MTS assay as well as ROS production by using a HUVEC model, showing that the fibers do not affect cell viability and only nanofibers containing 10% Cm-p1-PVA improved ROS generation. In addition, the secretion of pro-inflammatory cytokines IL-6 and TNF-α by the HUVECs was also slightly modified by the 10% Cm-p1-PVA nanofibers. In conclusion, the electrospinning technique applied here allowed for the manufacture of biodegradable biomimetic nanofibrous extracellular membranes with the ability to control fungal infection.


Assuntos
Antifúngicos , Organismos Aquáticos/química , Candida albicans/crescimento & desenvolvimento , Células Endoteliais da Veia Umbilical Humana/metabolismo , Nanofibras/química , Peptídeos , Antifúngicos/química , Antifúngicos/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Interleucina-6/metabolismo , Teste de Materiais/métodos , Microscopia de Força Atômica , Nanofibras/ultraestrutura , Peptídeos/química , Peptídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA