Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Occup Rehabil ; 30(3): 354-361, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32236811

RESUMO

PURPOSE: This paper aims to illustrate an example of how to set up a work injury database: the Smart Work Injury Management (SWIM) system. It is a secure and centralized cloud platform containing a set of management tools for data storage, data analytics, and machine learning. It employs artificial intelligence to perform in-depth analysis via text-mining techniques in order to extract both dynamic and static data from work injury case files. When it is fully developed, this system can provide a more accurate prediction model for cost of work injuries. It can also predict return-to-work (RTW) trajectory and provide advice on medical care and RTW interventions to all RTW stakeholders. The project will comprise three stages. Stage one: to identify human factors in terms of both facilitators and barriers RTW through face-to-face interviews and focus group discussions with different RTW stakeholders in order to collect opinions related to facilitators, barriers, and essential interventions for RTW of injured workers; Stage two: to develop a machine learning model which employs artificial intelligence to perform in-depth analysis. The technologies used will include: 1. Text-mining techniques including English and Chinese work segmentation as well as N-Gram to extract both dynamic and static data from free-style text as well as sociodemographic information from work injury case files; 2. Principle component/independent component analysis to identify features of significant relationships with RTW outcomes or combine raw features into new features; 3. A machine learning model that combines Variational Autoencoder, Long and Short Term Memory, and Neural Turning Machines. Stage two will also include the development of an interactive dashboard and website to query the trained machine learning model. Stage three: to field test the SWIM system. CONCLUSION: SWIM ia secure and centralized cloud platform containing a set of management tools for data storage, data analytics, and machine learning. When it is fully developed, SWIM can provide a more accurate prediction model for the cost of work injuries and advice on medical care and RTW interventions to all RTW stakeholders. ETHICS: The project has been approved by the Ethics Committee for Human Subjects at the Hong Kong Polytechnic University and is funded by the Innovation and Technology Commission (Grant # ITS/249/18FX).


Assuntos
Inteligência Artificial , Avaliação da Deficiência , Retorno ao Trabalho , Emprego , Grupos Focais , Hong Kong , Humanos
2.
Bioengineering (Basel) ; 10(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36829666

RESUMO

As occupational rehabilitation services are part of the public medical and health services in Hong Kong, work-injured workers are treated along with other patients and are not considered a high priority for occupational rehabilitation services. The idea of a work trial arrangement in the private market occurred to meet the need for a more coordinated occupational rehabilitation practice. However, there is no clear service standard in private occupational rehabilitation services nor concrete suggestions on how to offer rehabilitation plans to injured workers. Electronic Health Records (EHRs) data can provide a foundation for developing a model to improve this situation. This project aims at using a machine-learning-based approach to enhance the traditional prediction of disability duration and rehabilitation plans for work-related injury and illness. To help patients and therapists to understand the machine learning result, we also developed an interactive dashboard to visualize machine learning results. The outcome is promising. Using the variational autoencoder, our system performed better in predicting disability duration. We have around 30% improvement compared with the human prediction error. We also proposed further development to construct a better system to manage the work injury case.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA