Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; : e1801891, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29975434

RESUMO

The existence of defects and traps in a transistor plays an adverse role on efficient charge transport. In response to this challenge, extensive research has been conducted on semiconductor crystalline materials in the past decades. However, the development of dielectric crystals for transistors is still in its infancy due to the lack of appropriate dielectric crystalline materials and, most importantly, the crystal morphology required by the gate dielectric layer, which is also crucial for the construction of high-performance transistor as it can greatly improve the interfacial quality of carrier transport path. Here, a new type of dielectric crystal of hexagonal aluminum nitride (AlN) with the desired 2D morphology of combing thin thickness with large lateral dimension is synthesized. Such a suitable morphology in combination with the outstanding dielectric properties of AlN makes it promising as a gate dielectric for transistors. Furthermore, ultrathin 2,6-diphenylanthracene molecular crystals with only a few molecular layers can be prepared on AlN crystal via van der Waals epitaxy. As a result, this all-crystalline system incorporating dielectric and semiconductor crystals greatly enhances the overall performance of a transistor, indicating the importance of minimizing defects and preparing high-quality semiconductor/dielectric interface in a transistor configuration.

2.
Sci Rep ; 6: 31980, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27550237

RESUMO

Layered material MoS2 has been attracting much attention due to its excellent electronical properties and catalytic property. Here we report the synthesis of vertically standing MoS2 triangles on silicon carbon(SiC), through a rapid sulfidation process. Such edge-terminated films are metastable structures of MoS2, which may find applications in FinFETs and catalytic reactions. We have confirmed the catalytic property in a hydrogen evolution reaction(HER). The Tafel slope is about 54mV/decade.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA