Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 160(6): 1145-58, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25768910

RESUMO

Nucleosomes help structure chromosomes by compacting DNA into fibers. To gain insight into how nucleosomes are arranged in vivo, we combined quantitative super-resolution nanoscopy with computer simulations to visualize and count nucleosomes along the chromatin fiber in single nuclei. Nucleosomes assembled in heterogeneous groups of varying sizes, here termed "clutches," and these were interspersed with nucleosome-depleted regions. The median number of nucleosomes inside clutches and their compaction defined as nucleosome density were cell-type-specific. Ground-state pluripotent stem cells had, on average, less dense clutches containing fewer nucleosomes and clutch size strongly correlated with the pluripotency potential of induced pluripotent stem cells. RNA polymerase II preferentially associated with the smallest clutches while linker histone H1 and heterochromatin were enriched in the largest ones. Our results reveal how the chromatin fiber is formed at nanoscale level and link chromatin fiber architecture to stem cell state.


Assuntos
Cromatina/química , Nucleossomos/química , Nucleossomos/ultraestrutura , Animais , Diferenciação Celular , Cromatina/metabolismo , Simulação por Computador , Células-Tronco Embrionárias/química , Células-Tronco Embrionárias/metabolismo , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Humanos , Interfase , Camundongos , Mutação , Nucleossomos/metabolismo , Células-Tronco Pluripotentes/química , Células-Tronco Pluripotentes/metabolismo , RNA Polimerase II/metabolismo
2.
Mol Cell ; 82(2): 315-332, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35063099

RESUMO

Since its initial demonstration in 2000, far-field super-resolution light microscopy has undergone tremendous technological developments. In parallel, these developments have opened a new window into visualizing the inner life of cells at unprecedented levels of detail. Here, we review the technical details behind the most common implementations of super-resolution microscopy and highlight some of the recent, promising advances in this field.


Assuntos
Biologia Celular/tendências , Fenômenos Fisiológicos Celulares , Microscopia/tendências , Imagem Molecular/tendências , Imagem Óptica/tendências , Imagem Individual de Molécula/tendências , Animais , Difusão de Inovações , Humanos , Processamento de Imagem Assistida por Computador/tendências
3.
Mol Cell ; 81(15): 3065-3081.e12, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34297911

RESUMO

The chromatin fiber folds into loops, but the mechanisms controlling loop extrusion are still poorly understood. Using super-resolution microscopy, we visualize that loops in intact nuclei are formed by a scaffold of cohesin complexes from which the DNA protrudes. RNA polymerase II decorates the top of the loops and is physically segregated from cohesin. Augmented looping upon increased loading of cohesin on chromosomes causes disruption of Lamin at the nuclear rim and chromatin blending, a homogeneous distribution of chromatin within the nucleus. Altering supercoiling via either transcription or topoisomerase inhibition counteracts chromatin blending, increases chromatin condensation, disrupts loop formation, and leads to altered cohesin distribution and mobility on chromatin. Overall, negative supercoiling generated by transcription is an important regulator of loop formation in vivo.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Transcrição Gênica/fisiologia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Linhagem Celular , Núcleo Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Laminas/genética , Laminas/metabolismo , RNA Polimerase II/metabolismo , Imagem Individual de Molécula/métodos , Coesinas
4.
Genes Dev ; 35(21-22): 1475-1489, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34675061

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) are generated de novo in the embryo from hemogenic endothelial cells (HECs) via an endothelial-to-hematopoietic transition (EHT) that requires the transcription factor RUNX1. Ectopic expression of RUNX1 alone can efficiently promote EHT and HSPC formation from embryonic endothelial cells (ECs), but less efficiently from fetal or adult ECs. Efficiency correlated with baseline accessibility of TGFß-related genes associated with endothelial-to-mesenchymal transition (EndoMT) and participation of AP-1 and SMAD2/3 to initiate further chromatin remodeling along with RUNX1 at these sites. Activation of TGFß signaling improved the efficiency with which RUNX1 specified fetal ECs as HECs. Thus, the ability of RUNX1 to promote EHT depends on its ability to recruit the TGFß signaling effectors AP-1 and SMAD2/3, which in turn is determined by the changing chromatin landscape in embryonic versus fetal ECs. This work provides insight into regulation of EndoMT and EHT that will guide reprogramming efforts for clinical applications.


Assuntos
Hemangioblastos , Diferenciação Celular/genética , Cromatina/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Feto , Hemangioblastos/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas , Humanos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1
5.
Mol Cell ; 79(4): 677-688.e6, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32574554

RESUMO

Enzymatic probes of chromatin structure reveal accessible versus inaccessible chromatin states, while super-resolution microscopy reveals a continuum of chromatin compaction states. Characterizing histone H2B movements by single-molecule tracking (SMT), we resolved chromatin domains ranging from low to high mobility and displaying different subnuclear localizations patterns. Heterochromatin constituents correlated with the lowest mobility chromatin, whereas transcription factors varied widely with regard to their respective mobility with low- or high-mobility chromatin. Pioneer transcription factors, which bind nucleosomes, can access the low-mobility chromatin domains, whereas weak or non-nucleosome binding factors are excluded from the domains and enriched in higher mobility domains. Nonspecific DNA and nucleosome binding accounted for most of the low mobility of strong nucleosome interactor FOXA1. Our analysis shows how the parameters of the mobility of chromatin-bound factors, but not their diffusion behaviors or SMT-residence times within chromatin, distinguish functional characteristics of different chromatin-interacting proteins.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Biologia Molecular/métodos , Animais , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Recuperação de Fluorescência Após Fotodegradação , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Humanos , Camundongos , Nucleossomos/metabolismo
6.
J Cell Sci ; 136(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36744380

RESUMO

Mitochondrial homeostasis requires a dynamic balance of fission and fusion. The actin cytoskeleton promotes fission, and we found that the mitochondrially localized myosin, myosin 19 (Myo19), is integral to this process. Myo19 knockdown induced mitochondrial elongation, whereas Myo19 overexpression induced fragmentation. This mitochondrial fragmentation was blocked by a Myo19 mutation predicted to inhibit ATPase activity and strong actin binding but not by mutations predicted to affect the working stroke of the motor that preserve ATPase activity. Super-resolution imaging indicated a dispersed localization of Myo19 on mitochondria, which we found to be dependent on metaxins. These observations suggest that Myo19 acts as a dynamic actin-binding tether that facilitates mitochondrial fragmentation. Myo19-driven fragmentation was blocked by depletion of either the CAAX splice variant of the endoplasmic reticulum (ER)-anchored formin INF2 or the mitochondrially localized F-actin nucleator Spire1C (a splice variant of Spire1), which together polymerize actin at sites of mitochondria-ER contact for fission. These observations imply that Myo19 promotes fission by stabilizing mitochondria-ER contacts; we used a split-luciferase system to demonstrate a reduction in these contacts following Myo19 depletion. Our data support a model in which Myo19 tethers mitochondria to ER-associated actin to promote mitochondrial fission.


Assuntos
Actinas , Dinâmica Mitocondrial , Actinas/metabolismo , Miosinas/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo
7.
Mol Cell ; 67(4): 566-578.e10, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28803781

RESUMO

50 years ago, Vincent Allfrey and colleagues discovered that lymphocyte activation triggers massive acetylation of chromatin. However, the molecular mechanisms driving epigenetic accessibility are still unknown. We here show that stimulated lymphocytes decondense chromatin by three differentially regulated steps. First, chromatin is repositioned away from the nuclear periphery in response to global acetylation. Second, histone nanodomain clusters decompact into mononucleosome fibers through a mechanism that requires Myc and continual energy input. Single-molecule imaging shows that this step lowers transcription factor residence time and non-specific collisions during sampling for DNA targets. Third, chromatin interactions shift from long range to predominantly short range, and CTCF-mediated loops and contact domains double in numbers. This architectural change facilitates cognate promoter-enhancer contacts and also requires Myc and continual ATP production. Our results thus define the nature and transcriptional impact of chromatin decondensation and reveal an unexpected role for Myc in the establishment of nuclear topology in mammalian cells.


Assuntos
Linfócitos B/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Histonas/metabolismo , Ativação Linfocitária , Proteínas Proto-Oncogênicas c-myc/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Trifosfato de Adenosina/metabolismo , Animais , Linfócitos B/imunologia , Linhagem Celular , Cromatina/química , Cromatina/genética , Metilação de DNA , Epigênese Genética , Genótipo , Histonas/química , Imunidade Humoral , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Conformação de Ácido Nucleico , Fenótipo , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Imagem Individual de Molécula , Relação Estrutura-Atividade , Fatores de Tempo , Transcrição Gênica
8.
Nat Methods ; 18(6): 669-677, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34059826

RESUMO

Single-molecule localization microscopy (SMLM) relies on the blinking behavior of a fluorophore, which is the stochastic switching between fluorescent and dark states. Blinking creates multiple localizations belonging to the same fluorophore, confounding quantitative analyses and interpretations. Here we present a method, termed distance distribution correction (DDC), to eliminate blinking-caused repeat localizations without any additional calibrations. The approach relies on obtaining the true pairwise distance distribution of different fluorophores naturally from the imaging sequence by using distances between localizations separated by a time much longer than the average fluorescence survival time. We show that, using the true pairwise distribution, we can define and maximize the likelihood, obtaining a set of localizations void of blinking artifacts. DDC results in drastic improvements in obtaining the closest estimate of the true spatial organization and number of fluorescent emitters in a wide range of applications, enabling accurate reconstruction and quantification of SMLM images.


Assuntos
Algoritmos , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Artefatos , Corantes Fluorescentes/química , Processos Estocásticos
9.
Histochem Cell Biol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753186

RESUMO

The mystery of how human DNA is compactly packaged into a nucleus-a space a hundred thousand times smaller-while still allowing for the regulation of gene function, has long been one of the greatest enigmas in cell biology. This puzzle is gradually being solved, thanks in part to the advent of new technologies. Among these, innovative genome-labeling techniques combined with high-resolution imaging methods have been pivotal. These methods facilitate the visualization of DNA within intact nuclei and have significantly contributed to our current understanding of genome organization. This review will explore various labeling and imaging approaches that are revolutionizing our understanding of the three-dimensional organization of the genome, shedding light on the relationship between its structure and function.

10.
Nucleic Acids Res ; 50(1): 175-190, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34929735

RESUMO

Transcription and genome architecture are interdependent, but it is still unclear how nucleosomes in the chromatin fiber interact with nascent RNA, and which is the relative nuclear distribution of these RNAs and elongating RNA polymerase II (RNAP II). Using super-resolution (SR) microscopy, we visualized the nascent transcriptome, in both nucleoplasm and nucleolus, with nanoscale resolution. We found that nascent RNAs organize in structures we termed RNA nanodomains, whose characteristics are independent of the number of transcripts produced over time. Dual-color SR imaging of nascent RNAs, together with elongating RNAP II and H2B, shows the physical relation between nucleosome clutches, RNAP II, and RNA nanodomains. The distance between nucleosome clutches and RNA nanodomains is larger than the distance measured between elongating RNAP II and RNA nanodomains. Elongating RNAP II stands between nascent RNAs and the small, transcriptionally active, nucleosome clutches. Moreover, RNA factories are small and largely formed by few RNAP II. Finally, we describe a novel approach to quantify the transcriptional activity at an individual gene locus. By measuring local nascent RNA accumulation upon transcriptional activation at single alleles, we confirm the measurements made at the global nuclear level.


Assuntos
Nucleossomos/metabolismo , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Humanos , Nucleossomos/ultraestrutura , Transcriptoma
11.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33952699

RESUMO

Tau is a microtubule-associated protein, which promotes neuronal microtubule assembly and stability. Accumulation of tau into insoluble aggregates known as neurofibrillary tangles (NFTs) is a pathological hallmark of several neurodegenerative diseases. The current hypothesis is that small, soluble oligomeric tau species preceding NFT formation cause toxicity. However, thus far, visualizing the spatial distribution of tau monomers and oligomers inside cells under physiological or pathological conditions has not been possible. Here, using single-molecule localization microscopy, we show that tau forms small oligomers on microtubules ex vivo. These oligomers are distinct from those found in cells exhibiting tau aggregation and could be precursors of aggregated tau in pathology. Furthermore, using an unsupervised shape classification algorithm that we developed, we show that different tau phosphorylation states are associated with distinct tau aggregate species. Our work elucidates tau's nanoscale composition under nonaggregated and aggregated conditions ex vivo.


Assuntos
Microtúbulos/metabolismo , Neurônios/metabolismo , Proteínas tau/metabolismo , Humanos , Emaranhados Neurofibrilares/metabolismo , Fosforilação , Imagem Individual de Molécula , Proteínas tau/genética
12.
Nat Methods ; 17(4): 371-379, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32123395

RESUMO

The relationship between the 4D folding of the genome and its function is an outstanding question in biology. A range of methods that probe the folding of the genome in space and time with unprecedented resolution have been developed. These methods, including chromosome conformation capture and high-resolution light and electron microscopy, are shedding new light on genome architecture and function. Here, we review the emerging picture of genome organization revealed by super-resolution and live-cell imaging. We compare and contrast population-based chromosome conformation capture approaches and imaging-based approaches and highlight future challenges.


Assuntos
DNA/química , DNA/genética , Genoma , Coloração Cromossômica , Humanos , Microscopia Eletrônica , Microscopia de Fluorescência , Conformação de Ácido Nucleico
13.
Biophys J ; 120(13): 2644-2656, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34087211

RESUMO

The leukocyte-specific ß2-integrin LFA-1 and its ligand ICAM-1, expressed on endothelial cells (ECs), are involved in the arrest, adhesion, and transendothelial migration of leukocytes. Although the role of mechanical forces on LFA-1 activation is well established, the impact of forces on its major ligand ICAM-1 has received less attention. Using a parallel-plate flow chamber combined with confocal and super-resolution microscopy, we show that prolonged shear flow induces global translocation of ICAM-1 on ECs upstream of flow direction. Interestingly, shear forces caused actin rearrangements and promoted actin-dependent ICAM-1 nanoclustering before LFA-1 engagement. T cells adhered to mechanically prestimulated ECs or nanoclustered ICAM-1 substrates developed a promigratory phenotype, migrated faster, and exhibited shorter-lived interactions with ECs than when adhered to non mechanically stimulated ECs or to monomeric ICAM-1 substrates. Together, our results indicate that shear forces increase ICAM-1/LFA-1 bonds because of ICAM-1 nanoclustering, strengthening adhesion and allowing cells to exert higher traction forces required for faster migration. Our data also underscore the importance of mechanical forces regulating the nanoscale organization of membrane receptors and their contribution to cell adhesion regulation.


Assuntos
Células Endoteliais , Molécula 1 de Adesão Intercelular , Adesão Celular , Movimento Celular , Antígeno-1 Associado à Função Linfocitária
14.
Nucleic Acids Res ; 47(16): 8470-8484, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31287868

RESUMO

Chromatin organization is crucial for regulating gene expression. Previously, we showed that nucleosomes form groups, termed clutches. Clutch size correlated with the pluripotency grade of mouse embryonic stem cells and human induced pluripotent stem cells. Recently, it was also shown that regions of the chromatin containing activating epigenetic marks were composed of small and dispersed chromatin nanodomains with lower DNA density compared to the larger silenced domains. Overall, these results suggest that clutch size may regulate DNA packing density and gene activity. To directly test this model, we carried out 3D, two-color super-resolution microscopy of histones and DNA with and without increased histone tail acetylation. Our results showed that lower percentage of DNA was associated with nucleosome clutches in hyperacetylated cells. We further showed that the radius and compaction level of clutch-associated DNA decreased in hyperacetylated cells, especially in regions containing several neighboring clutches. Importantly, this change was independent of clutch size but dependent on the acetylation state of the clutch. Our results directly link the epigenetic state of nucleosome clutches to their DNA packing density. Our results further provide in vivo support to previous in vitro models that showed a disruption of nucleosome-DNA interactions upon hyperacetylation.


Assuntos
DNA/química , Epigênese Genética , Heterocromatina/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Ciclo Celular/genética , Linhagem Celular , DNA/genética , DNA/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Heterocromatina/ultraestrutura , Histonas/genética , Humanos , Microscopia/métodos , Nucleossomos/ultraestrutura
15.
Proc Natl Acad Sci U S A ; 115(51): 12991-12996, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30509979

RESUMO

Recent advancements in single-molecule-based superresolution microscopy have made it possible to visualize biological structures with unprecedented spatial resolution. Determining the spatial coorganization of these structures within cells under physiological and pathological conditions is an important biological goal. This goal has been stymied by the current limitations of carrying out superresolution microscopy in multiple colors. Here, we develop an approach for simultaneous multicolor superresolution imaging which relies solely on fluorophore excitation, rather than fluorescence emission properties. By modulating the intensity of the excitation lasers at different frequencies, we show that the color channel can be determined based on the fluorophore's response to the modulated excitation. We use this frequency multiplexing to reduce the image acquisition time of multicolor superresolution DNA-PAINT while maintaining all its advantages: minimal color cross-talk, minimal photobleaching, maximal signal throughput, ability to maintain the fluorophore density per imaged color, and ability to use the full camera field of view. We refer to this imaging modality as "frequency multiplexed DNA-PAINT," or fm-DNA-PAINT for short. We also show that frequency multiplexing is fully compatible with STORM superresolution imaging, which we term fm-STORM. Unlike fm-DNA-PAINT, fm-STORM is prone to color cross-talk. To overcome this caveat, we further develop a machine-learning algorithm to correct for color cross-talk with more than 95% accuracy, without the need for prior information about the imaged structure.


Assuntos
Cor , DNA/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Fluorescência , Corantes Fluorescentes , Humanos
16.
Nat Methods ; 14(8): 789-792, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28650478

RESUMO

Single-molecule-based super-resolution microscopy offers researchers a unique opportunity to quantify protein copy number with nanoscale resolution. However, while fluorescent proteins have been characterized for quantitative imaging using calibration standards, similar calibration tools for immunofluorescence with small organic fluorophores are lacking. Here we show that DNA origami, in combination with GFP antibodies, is a versatile platform for calibrating fluorophore and antibody labeling efficiency to quantify protein copy number in cellular contexts using super-resolution microscopy.


Assuntos
DNA/metabolismo , Aumento da Imagem/métodos , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos
17.
Nucleic Acids Res ; 46(5): e30, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29294098

RESUMO

CRISPR/dCas9-based labeling has allowed direct visualization of genomic regions in living cells. However, poor labeling efficiency and signal-to-background ratio have limited its application to visualize genome organization using super-resolution microscopy. We developed (Po)STAC (Polycistronic SunTAg modified CRISPR) by combining CRISPR/dCas9 with SunTag labeling and polycistronic vectors. (Po)STAC enhances both labeling efficiency and fluorescence signal detected from labeled loci enabling live cell imaging as well as super-resolution fixed-cell imaging of multiple genes with high spatiotemporal resolution.


Assuntos
Sistemas CRISPR-Cas/genética , Genes/genética , Vetores Genéticos/genética , Medições Luminescentes/métodos , Imagem com Lapso de Tempo/métodos , Animais , Linhagem Celular , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Hibridização in Situ Fluorescente/métodos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Reprodutibilidade dos Testes , Telômero/genética , Telômero/metabolismo
18.
Proc Natl Acad Sci U S A ; 114(50): 13188-13193, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29192024

RESUMO

Eph receptor signaling plays key roles in vertebrate tissue boundary formation, axonal pathfinding, and stem cell regeneration by steering cells to positions defined by its ligand ephrin. Some of the key events in Eph-ephrin signaling are understood: ephrin binding triggers the clustering of the Eph receptor, fostering transphosphorylation and signal transduction into the cell. However, a quantitative and mechanistic understanding of how the signal is processed by the recipient cell into precise and proportional responses is largely lacking. Studying Eph activation kinetics requires spatiotemporal data on the number and distribution of receptor oligomers, which is beyond the quantitative power offered by prevalent imaging methods. Here we describe an enhanced fluorescence fluctuation imaging analysis, which employs statistical resampling to measure the Eph receptor aggregation distribution within each pixel of an image. By performing this analysis over time courses extending tens of minutes, the information-rich 4D space (x, y, oligomerization, time) results were coupled to straightforward biophysical models of protein aggregation. This analysis reveals that Eph clustering can be explained by the combined contribution of polymerization of receptors into clusters, followed by their condensation into far larger aggregates. The modeling reveals that these two competing oligomerization mechanisms play distinct roles: polymerization mediates the activation of the receptor by assembling monomers into 6- to 8-mer oligomers; condensation of the preassembled oligomers into large clusters containing hundreds of monomers dampens the signaling. We propose that the polymerization-condensation dynamics creates mechanistic explanation for how cells properly respond to variable ligand concentrations and gradients.


Assuntos
Efrinas/metabolismo , Multimerização Proteica , Receptores da Família Eph/metabolismo , Transdução de Sinais , Células HEK293 , Humanos , Polimerização , Receptores da Família Eph/química
19.
Biophys J ; 116(11): 2195-2203, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31103226

RESUMO

The use of super-resolution microscopy in recent years has revealed that proteins often form small assemblies inside cells and are organized in nanoclusters. However, determining the copy number of proteins within these nanoclusters constitutes a major challenge because of unknown labeling stoichiometries and complex fluorophore photophysics. We previously developed a DNA-origami-based calibration approach to extract protein copy number from super-resolution images. However, the applicability of this approach is limited by the fact that the calibration is dependent on the specific labeling and imaging conditions used in each experiment. Hence, the calibration must be repeated for each experimental condition, which is a formidable task. Here, using cells stably expressing dynein intermediate chain fused to green fluorescent protein (HeLa IC74 cells) as a reference sample, we demonstrate that the DNA-origami-based calibration data we previously generated can be extended to super-resolution images taken under different experimental conditions, enabling the quantification of any green-fluorescent-protein-fused protein of interest. To do so, we first quantified the copy number of dynein motors within nanoclusters in the cytosol and along the microtubules. Interestingly, this quantification showed that dynein motors form assemblies consisting of more than one motor, especially along microtubules. This quantification enabled us to use the HeLa IC74 cells as a reference sample to calibrate and quantify protein copy number independently of labeling and imaging conditions, dramatically improving the versatility and applicability of our approach.


Assuntos
Dosagem de Genes , Processamento de Imagem Assistida por Computador , Microscopia , Calibragem , Dineínas/genética , Dineínas/metabolismo , Células HeLa , Humanos , Microtúbulos/metabolismo
20.
J Cell Sci ; 130(11): 1904-1916, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28420672

RESUMO

Vesicle transport is regulated at multiple levels, including regulation by scaffolding proteins and the cytoskeleton. This tight regulation is essential, since slowing or stoppage of transport can cause accumulation of obstacles and has been linked to diseases. Understanding the mechanisms by which transport is regulated as well as how motor proteins overcome obstacles can give important clues as to how these mechanisms break down in disease states. Here, we describe that the cytoskeleton architecture impacts transport in a vesicle-size-dependent manner, leading to pausing of vesicles larger than the separation of the microtubules. We further develop methods capable of following 3D transport processes in living cells. Using these methods, we show that vesicles move using two different modes along the microtubule. Off-axis motion, which leads to repositioning of the vesicle in 3D along the microtubule, correlates with the presence of steric obstacles and may help in circumventing them.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/ultraestrutura , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/ultraestrutura , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Microesferas , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Nocodazol/farmacologia , Imagem Óptica , Paclitaxel/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tubulina (Proteína)/genética , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA