Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(11): 2564-2576, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36896577

RESUMO

The product properties of mixed oxide nanoparticles generated via spray-flame synthesis depend on an intricate interplay of solvent and precursor chemistries in the processed solution. The effect of two different sets of metal precursors, acetates and nitrates, dissolved in a mixture of ethanol (35 Vol.%) and 2-ethylhexanoic acid (2-EHA, 65 Vol.%) was investigated for the synthesis of LaFexCo1-xO3 (x = 0.2, 0.3) perovskites. Regardless of the set of precursors, similar particle-size distributions (dp = 8-11 nm) were obtained and a few particles with sizes above 20 nm were identified with transmission electron microscopy (TEM) measurements. Using acetates as precursors, inhomogeneous La, Fe, and Co elemental distributions were obtained for all particle sizes according to energy dispersive X-ray (EDX) mappings, connected to the formation of multiple secondary phases such as oxygen-deficient La3(FexCo1-x)3O8 brownmillerite or La4(FexCo1-x)3O10 Ruddlesden-Popper (RP) structures besides the main trigonal perovskite phase. For samples synthesized from nitrates, inhomogeneous elemental distributions were observed for large particles only where La and Fe enrichment occurred in combination with the formation of a secondary La2(FexCo1-x)O4 RP phase. Such variations can be attributed to reactions in the solution prior to injection in the flame as well as precursor-dependent variations in in-flame reactions. Therefore, the precursor solutions were analyzed by temperature-dependent attenuated total reflection Fourier-transform infrared (ATR-FTIR) measurements. The acetate-based precursor solutions indicated the partial conversion of, mainly La and Fe, acetates to metal 2-ethylhexanoates. In the nitrate-based solutions, esterification of ethanol and 2-EHA played the most important role. The synthesized nanoparticle samples were characterized by BET (Brunauer, Emmett, Teller), FTIR, Mössbauer, and X-ray photoelectron spectroscopy (XPS). All samples were tested as oxygen evolution reaction (OER) catalysts, and similar electrocatalytic activities were recorded when evaluating the potential required to reach 10 mA/cm2 current density (∼1.61 V vs reversible hydrogen electrode (RHE)).

2.
Soft Matter ; 18(5): 1089-1099, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35037679

RESUMO

The paper addresses coupling of magnetic nanoparticles (MNPs) with the polymer matrix of temperature-sensitive microgels and their response to magnetic fields. Therefore, CoFe2O4@CA (CA = citric acid) NPs are embedded within N-isopropylacrylamid (NIPAM) based microgels. The volume phase transition (VPT) of the magnetic microgels and the respective pure microgels is studied by dynamic light scattering and electrophoretic mobility measurements. The interaction between MNPs and microgel network is studied via magnetometry and AC-susceptometry using a superconducting quantum interference device (SQUID). The data show a significant change of the magnetic properties by crossing the VPT temperature (VPTT). The change is related to the increased confinement of the MNP due to the shrinking of the microgels. Modifying the microgel with hydrophobic allyl mercaptan (AM) affects the swelling ability and the magnetic response, i.e. the coupling of MNPs with the polymer matrix. Modeling the AC-susceptibility data results in an effective size distribution. This distribution represents the varying degree of constraint in MNP rotation and motion by the microgel network. These findings help to understand the interaction between MNPs and the microgel matrix to design multi responsive systems with tunable particle matrix coupling strength for future applications.

3.
Chemistry ; 27(68): 17038-17048, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34596277

RESUMO

By using the crystalline precursor decomposition approach and direct co-precipitation the composition and mesostructure of cobalt-based spinels can be controlled. A systematic substitution of cobalt with redox-active iron and redox-inactive magnesium and aluminum in a cobalt spinel with anisotropic particle morphology with a preferred 111 surface termination is presented, resulting in a substitution series including Co3 O4 , MgCo2 O4 , Co2 FeO4 , Co2 AlO4 and CoFe2 O4 . The role of redox pairs in the spinels is investigated in chemical water oxidation by using ceric ammonium nitrate (CAN test), electrochemical oxygen evolution reaction (OER) and H2 O2 decomposition. Studying the effect of dominant surface termination, isotropic Co3 O4 and CoFe2 O4 catalysts with more or less spherical particles are compared to their anisotropic analogues. For CAN-test and OER, Co3+ plays the major role for high activity. In H2 O2 decomposition, Co2+ reveals itself to be of major importance. Redox active cations in the structure enhance the catalytic activity in all reactions. A benefit of a predominant 111 surface termination depends on the cobalt oxidation state in the as-prepared catalysts and the investigated reaction.

4.
Chemistry ; 27(68): 17127-17144, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34633707

RESUMO

Perovskites are interesting oxidation catalysts due to their chemical flexibility enabling the tuning of several properties. In this work, we synthesized LaFe1-x Cox O3 catalysts by co-precipitation and thermal decomposition, characterized them thoroughly and studied their 2-propanol oxidation activity under dry and wet conditions to bridge the knowledge gap between gas and liquid phase reactions. Transient tests showed a highly active, unstable low-temperature (LT) reaction channel in conversion profiles and a stable, less-active high-temperature (HT) channel. Cobalt incorporation had a positive effect on the activity. The effect of water was negative on the LT channel, whereas the HT channel activity was boosted for x>0.15. The boost may originate from a slower deactivation rate of the Co3+ sites under wet conditions and a higher amount of hydroxide species on the surface comparing wet to dry feeds. Water addition resulted in a slower deactivation for Co-rich catalysts and higher activity in the HT channel state.

5.
Soft Matter ; 17(32): 7565-7584, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34341807

RESUMO

The implementation of anisotropy to functional materials is a key step towards future smart materials. In this work, we evaluate the influence of preorientation and sample architecture on the strain-induced anisotropy in hybrid elastomers containing covalently attached elongated magnetic filler particles. Accordingly, silica coated spindle-type hematite nanoparticles are incorporated into poly(dimethylsiloxane)-based elastomers, and two types of composite architectures are compared: on the one hand a conventional architecture of filled, covalently crosslinked elastomers, and on the other hybrid elastomers that are crosslinked exclusively by covalent attachment of the polymer chains to the particle surface. By the application of external strain and with magnetic fields, the orientational order of the elongated nanoparticles can be manipulated, and we investigate the interplay between strain, magnetic order, and orientational order of the particles by combining 2D small angle X-ray scattering experiments under strain and fields with Mössbauer spectroscopy under similar conditions, and supplementary angular-dependent magnetization experiments. The converging information is used to quantify the order in these interesting materials, while establishing a direct link between the magnetic properties and the spatial orientation of the embedded magnetic nanoparticles.

6.
Phys Chem Chem Phys ; 23(43): 24557-24569, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34755719

RESUMO

Liquid crystal (LC) based magnetic materials consisting of LC hosts doped with functional magnetic nanoparticles enable optical switching of the mesogens at moderate magnetic field strengths and thereby open the pathway for the design of novel smart devices. A promising route for the fabrication of stable ferronematic phases is the attachment of a covalently bound LC polymer shell onto the surface of nanoparticles. With this approach, ferronematic phases based on magnetically blocked particles and the commercial LC 4-cyano-4'-pentylbiphenyl (5CB) liquid crystal were shown to have a sufficient magnetic sensitivity, but the mechanism of the magneto-nematic coupling is unidentified. To get deeper insight into the coupling modes present in these systems, we prepared ferronematic materials based on superparamagnetic particles, which respond to external fields with internal magnetic realignment instead of mechanical rotation. This aims at clarifying whether the hard coupling of the magnetization to the particle's orientation (magnetic blocking) is a necessary component of the magnetization-nematic director coupling mechanism. We herein report the fabrication of a ferronematic phase consisting of surface-functionalized superparamagnetic Fe3O4 particles and 5CB. We characterize the phase behavior and investigate the magneto-optical properties of the new ferronematic phase and compare it to the ferronematic system containing magnetically blocked CoFe2O4 particles to get information about the origin of the magneto-nematic coupling.

7.
Soft Matter ; 16(32): 7562-7575, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32716420

RESUMO

In several upcoming rheological approaches, including methods of micro- and nanorheology, the measurement geometry is of critical impact on the interpretation of the results. The relative size of the probe objects employed (as compared to the intrinsic length scales of the sample to be investigated) becomes of crucial importance, and there is increasing interest to investigate the dynamic processes and mobility in nanostructured materials. A combination of different rheological approaches based on the rotation of magnetically blocked nanoprobes is used to systematically investigate the size-dependent diffusion behavior in aqueous poly(ethylene glycol) (PEG) solutions with special attention paid to the relation of probe size to characteristic length scales within the polymer solutions. We employ two types of probe particles: nickel rods of hydrodynamic length Lh between 200 nm and 650 nm, and cobalt ferrite spheres with diameter dh between 13 nm and 23 nm, and examine the influence of particle size and shape on the nanorheological information obtained in model polymer solutions based on two related, dynamic-magnetic approaches. The results confirm that as long as the investigated solutions are not entangled, and the particles are much larger than the macromolecular correlation length, a good accordance between macroscopic and nanoscopic results, whereas a strong size-dependent response is observed in cases where the particles are of similar size or smaller than the radius of gyration Rg or the correlation length ξ of the polymer solution.

8.
Inorg Chem ; 59(6): 3677-3685, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32090551

RESUMO

Fe3O4/CoFe2O4 nanorods were obtained via a simple seed-mediated synthesis. Nanorods were used as seeds to grow CoFe2O4 by thermal codecomposition of the cobalt(II) and iron(III) acetylacetonate precursors. The growth process was monitored by electron microscopy (SEM, TEM), and the resulting nanorods were characterized by powder X-ray diffraction analysis and IR and Raman spectroscopy. Magnetometry and AC susceptometry studies revealed a distribution of Néel relaxation times with an average blocking temperature of 140 K and a high-field magnetization of 42 Am2/kg. Complementarily recorded 57Fe-Mössbauer spectra were consistent with the Fe3O4/CoFe2O4 spinel structure and exhibited considerable signs of spin frustration, which was correlated to the internal and surface structure of the nanorods.

9.
Chemistry ; 23(51): 12443-12449, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28657661

RESUMO

Monocrystalline, yet porous mosaic platelets of cobalt ferrite, CoFe2 O4 , can be synthesized from a layered double hydroxide (LDH) precursor by thermal decomposition. Using an equimolar mixture of Fe2+ , Co2+ , and Fe3+ during co-precipitation, a mixture of LDH, (FeII CoII )2/3 FeIII1/3 (OH)2 (CO3 )1/6 ⋅m H2 O, and the target spinel CoFe2 O4 can be obtained in the precursor. During calcination, the remaining FeII fraction of the LDH is oxidized to FeIII leading to an overall Co2+ :Fe3+ ratio of 1:2 as required for spinel crystallization. This pre-adjustment of the spinel composition in the LDH precursor suggests a topotactic crystallization of cobalt ferrite and yields phase pure spinel in unusual anisotropic platelet morphology. The preferred topotactic relationship in most particles is [111]Spinel ∥[001]LDH . Due to the anion decomposition, holes are formed throughout the quasi monocrystalline platelets. This synthesis approach can be used for different ferrites and the unique microstructure leads to unusual chemical properties as shown by the application of the ex-LDH cobalt ferrite as catalyst in the selective oxidation of 2-propanol. Compared to commercial cobalt ferrite, which mainly catalyzes the oxidative dehydrogenation to acetone, the main reaction over the novel ex-LDH cobalt is dehydration to propene. Moreover, the oxygen evolution reaction (OER) activity of the ex-LDH catalyst was markedly higher compared to the commercial material.

10.
Inorg Chem ; 55(15): 7542-9, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27391769

RESUMO

Nearly phase-pure bismuth ferrite particles were formed by thermolysis of the single-source precursor [Cp(CO)2FeBi(OAc)2] (1) in octadecene at 245 °C, followed by subsequent calcination at 600 °C for 3 h. In contrast, the slightly modified compound [Cp(CO)2FeBi(O2C(t)Bu)2] (2) yielded only mixtures of different bismuth oxide phases, revealing the distinctive influence of molecular design in material synthesis. The chemical composition, morphology, and crystallinity of the resulting materials were investigated by X-ray diffraction, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. In addition, the optical properties were investigated by Fourier transform infrared and UV-vis spectroscopies, showing a strong band gap absorption in the visible range at 590 nm (2.2 eV). The magnetic behavior was probed by vibrating-sample and superconducting quantum interference device magnetometry, as well as (57)Fe Mössbauer spectroscopy.

11.
Nanomaterials (Basel) ; 13(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677981

RESUMO

The synthesis of bimetallic iron-nickel nanoparticles with control over the synthesized phases, particle size, surface chemistry, and oxidation level remains a challenge that limits the application of these nanoparticles. Pulsed laser ablation in liquid allows the properties tuning of the generated nanoparticles by changing the ablation solvent. Organic solvents such as acetone can minimize nanoparticle oxidation. Yet, economical laboratory and technical grade solvents that allow cost-effective production of FeNi nanoparticles contain water impurities, which are a potential source of oxidation. Here, we investigated the influence of water impurities in acetone on the properties of FeNi nanoparticles generated by pulsed laser ablation in liquids. To remove water impurities and produce "dried acetone", cost-effective and reusable molecular sieves (3 Å) are employed. The results show that the Fe50Ni50 nanoparticles' properties are influenced by the water content of the solvent. The metastable HCP FeNi phase is found in NPs prepared in acetone, while only the FCC phase is observed in NPs formed in water. Mössbauer spectroscopy revealed that the FeNi nanoparticles oxidation in dried acetone is reduced by 8% compared to acetone. The high-field magnetization of Fe50Ni50 nanoparticles in water is the highest, 68 Am2/kg, followed by the nanoparticles obtained after ablation in acetone without water impurities, 59 Am2/kg, and acetone, 52 Am2/kg. The core-shell structures formed in these three liquids are also distinctive, demonstrating that a core-shell structure with an outer oxide layer is formed in water, while carbon external layers are obtained in acetone without water impurity. The results confirm that the size, structure, phase, and oxidation of FeNi nanoparticles produced by pulsed laser ablation in liquids can be modified by changing the solvent or just reducing the water impurities in the organic solvent.

12.
Nanomaterials (Basel) ; 13(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242088

RESUMO

Using magnetic nanoparticles for extracorporeal magnetic heating applications in bio-medical technology allows higher external field amplitudes and thereby the utilization of particles with higher coercivities (HC). In this study, we report the synthesis and characterization of high coercivity cobalt ferrite nanoparticles following a wet co-precipitation method. Particles are characterized with magnetometry, X-ray diffraction, Mössbauer spectroscopy, transmission electron microscopy (TEM) and calorimetric measurements for the determination of their specific absorption rate (SAR). In the first series, CoxFe3-xO4 particles were synthesized with x = 1 and a structured variation of synthesis conditions, including those of the used atmosphere (O2 or N2). In the second series, particles with x = 0 to 1 were synthesized to study the influence of the cobalt fraction on the resulting magnetic and structural properties. Crystallite sizes of the resulting particles ranged between 10 and 18 nm, while maximum coercivities at room temperatures of 60 kA/m for synthesis with O2 and 37 kA/m for N2 were reached. Magnetization values at room temperature and 2 T (MRT,2T) up to 60 Am2/kg under N2 for x = 1 can be achieved. Synthesis parameters that lead to the formation of an additional phase when they exceed specific thresholds have been identified. Based on XRD findings, the direct correlation between high-field magnetization, the fraction of this antiferromagnetic byphase and the estimated transition temperature of this byphase, extracted from the Mössbauer spectroscopy series, we were able to attribute this contribution to akageneite. When varying the cobalt fraction x, a non-monotonous correlation of HC and x was found, with a linear increase of HC up to x = 0.8 and a decrease for x > 0.8, while magnetometry and in-field Mössbauer experiments demonstrated a moderate degree of spin canting for all x, yielding high magnetization. SAR values up to 480 W/g (@290 kHz, 69 mT) were measured for immobilized particles with x = 0.3, whit the external field amplitude being the limiting factor due to the high coercivities of our particles.

13.
Nanomaterials (Basel) ; 12(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35683727

RESUMO

Pulsed laser ablation in liquids was utilized to prepare NiFe2O4 (NFO) and CoFe2O4 (CFO) nanoparticles from ceramic targets. The morphology, crystallinity, composition, and particle size distribution of the colloids were investigated. We were able to identify decomposition products formed during the laser ablation process in water. Attempts to fractionate the nanoparticles using the high-gradient magnetic separation method were performed. The nanoparticles with crystallite sizes in the range of 5-100 nm possess superparamagnetic behavior and approximately 20 Am2/kg magnetization at room temperature. Their ability to absorb light in the visible range makes them potential candidates for catalysis applications in chemical reactions and in biomedicine.

14.
Nanomaterials (Basel) ; 12(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35159687

RESUMO

This paper describes the preparation and obtained magnetic properties of large single domain iron oxide nanoparticles. Such ferrimagnetic particles are particularly interesting for diagnostic and therapeutic applications in medicine or (bio)technology. The particles were prepared by a modified oxidation method of non-magnetic precursors following the green rust synthesis and characterized regarding their structural and magnetic properties. For increasing preparation temperatures (5 to 85 °C), an increasing particle size in the range of 30 to 60 nm is observed. Magnetic measurements confirm a single domain ferrimagnetic behavior with a mean saturation magnetization of ca. 90 Am2/kg and a size-dependent coercivity in the range of 6 to 15 kA/m. The samples show a specific absorption rate (SAR) of up to 600 W/g, which is promising for magnetic hyperthermia application. For particle preparation temperatures above 45 °C, a non-magnetic impurity phase occurs besides the magnetic iron oxides that results in a reduced net saturation magnetization.

15.
Front Bioeng Biotechnol ; 10: 965146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36329706

RESUMO

Ionic engineering is exploited to substitute Bi cations in BiFe0.95Mn0.05O3 NPs (BFM) with rare-earth (RE) elements (Nd, Gd, and Dy). The sol-gel synthesized RE-NPs are tested for their magnetic hyperthermia potential. RE-dopants alter the morphology of BFM NPs from elliptical to rectangular to irregular hexagonal for Nd, Gd, and Dy doping, respectively. The RE-BFM NPs are ferroelectric and show larger piezoresponse than the pristine BFO NPs. There is an increase of the maximum magnetization at 300 K of BFM up to 550% by introducing Gd. In hyperthermia tests, 3 mg/ml dispersion of NPs in water and agar could increase the temperature of the dispersion up to ∼39°C under an applied AC magnetic field of 80 mT. Although Gd doping generates the highest increment in magnetization of BFM NPs, the Dy-BFM NPs show the best hyperthermia results. These findings show that RE-doped BFO NPs are promising for hyperthermia and other biomedical applications.

16.
Sci Rep ; 11(1): 13719, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215776

RESUMO

The development of magnetocaloric materials represents an approach to enable efficient and environmentally friendly refrigeration. It is envisioned as a key technology to reduce CO2 emissions of air conditioning and cooling systems. Fe-Rh has been shown to be one of the best-suited materials in terms of heat exchange per material volume. However, the Fe-Rh magnetocaloric response depends on its composition. Hence, the adaptation of material processing routes that preserve the Fe-Rh magnetocaloric response in the generated structures is a fundamental step towards the industrial development of this cooling technology. To address this challenge, the temperature-dependent properties of laser synthesized Fe-Rh nanoparticles and the laser printing of Fe-Rh nanoparticle inks are studied to generate 2D magnetocaloric structures that are potentially interesting for applications such as waste heat management of compact electrical appliances or thermal diodes, switches, and printable magnetocaloric media. The magnetization and temperature dependence of the ink's γ-FeRh to B2-FeRh magnetic transition is analyzed throughout the complete process, finding a linear increase of the magnetization M (0.8 T, 300 K) up to 96 Am2/kg with ca. 90% of the γ-FeRh being transformed permanently into the B2-phase. In 2D structures, magnetization values of M (0.8 T, 300 K) ≈ 11 Am2/kg could be reached by laser sintering, yielding partial conversion to the B2-phase equivalent to long-time heating temperature of app. 600 K, via this treatment. Thus, the proposed procedure constitutes a robust route to achieve the generation of magnetocaloric structures.

17.
Nanoscale ; 13(14): 6965-6976, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33885498

RESUMO

Iron oxide nanoparticles are presently considered as main work horses for various applications including targeted drug delivery and magnetic hyperthermia. Several questions remain unsolved regarding the effect of size onto their overall magnetic behavior. One aspect is the reduction of magnetization compared to bulk samples. A detailed understanding of the underlying mechanisms of this reduction could improve the particle performance in applications. Here we use a number of complementary experimental techniques including neutron scattering and synchrotron X-ray diffraction to arrive at a consistent conclusion. We confirm the observation from previous studies of a reduced saturation magnetization and argue that this reduction is mainly associated with the presence of antiphase boundaries, which are observed directly using high-resolution transmission electron microscopy and indirectly via an anisotropic peak broadening in X-ray diffraction patterns. Additionally small-angle neutron scattering with polarized neutrons revealed a small non-magnetic surface layer, that is, however, not sufficient to explain the observed loss in magnetization alone.

18.
Nanomaterials (Basel) ; 10(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471031

RESUMO

Magnetite (Fe3O4) particles with a diameter around 10 nm have a very low coercivity (Hc) and relative remnant magnetization (Mr/Ms), which is unfavorable for magnetic fluid hyperthermia. In contrast, cobalt ferrite (CoFe2O4) particles of the same size have a very high Hc and Mr/Ms, which is magnetically too hard to obtain suitable specific heating power (SHP) in hyperthermia. For the optimization of the magnetic properties, the Fe2+ ions of magnetite were substituted by Co2+ step by step, which results in a Co doped iron oxide inverse spinel with an adjustable Fe2+ substitution degree in the full range of pure iron oxide up to pure cobalt ferrite. The obtained magnetic nanoparticles were characterized regarding their structural and magnetic properties as well as their cell toxicity. The pure iron oxide particles showed an average size of 8 nm, which increased up to 12 nm for the cobalt ferrite. For ferrofluids containing the prepared particles, only a limited dependence of Hc and Mr/Ms on the Co content in the particles was found, which confirms a stable dispersion of the particles within the ferrofluid. For dry particles, a strong correlation between the Co content and the resulting Hc and Mr/Ms was detected. For small substitution degrees, only a slight increase in Hc was found for the increasing Co content, whereas for a substitution of more than 10% of the Fe atoms by Co, a strong linear increase in Hc and Mr/Ms was obtained. Mössbauer spectroscopy revealed predominantly Fe3+ in all samples, while also verifying an ordered magnetic structure with a low to moderate surface spin canting. Relative spectral areas of Mössbauer subspectra indicated a mainly random distribution of Co2+ ions rather than the more pronounced octahedral site-preference of bulk CoFe2O4. Cell vitality studies confirmed no increased toxicity of the Co-doped iron oxide nanoparticles compared to the pure iron oxide ones. Magnetic heating performance was confirmed to be a function of coercivity as well. The here presented non-toxic magnetic nanoparticle system enables the tuning of the magnetic properties of the particles without a remarkable change in particles size. The found heating performance is suitable for magnetic hyperthermia application.

19.
Nanomaterials (Basel) ; 10(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261038

RESUMO

This study focuses on the synthesis of FeRh nanoparticles via pulsed laser ablation in liquid and on controlling the oxidation of the synthesized nanoparticles. Formation of monomodal γ-FeRh nanoparticles was confirmed by transmission electron microscopy (TEM) and their composition confirmed by atom probe tomography (APT). For these particles, three major contributors to oxidation were analysed: (1) dissolved oxygen in the organic solvents, (2) the bound oxygen in the solvent and (3) oxygen in the atmosphere above the solvent. The decrease of oxidation for optimized ablation conditions was confirmed through energy-dispersive X-ray (EDX) and Mössbauer spectroscopy. Furthermore, the time dependence of oxidation was monitored for dried FeRh nanoparticles powders using ferromagnetic resonance spectroscopy (FMR). By magnetophoretic separation, B2-FeRh nanoparticles could be extracted from the solution and characteristic differences of nanostrand formation between γ-FeRh and B2-FeRh nanoparticles were observed.

20.
ACS Appl Mater Interfaces ; 11(3): 3160-3168, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30582794

RESUMO

By studying the response behavior of ferrofluids of 6-22 nm maghemite nanoparticles in glycerol solution exposed to external magnetic fields, we demonstrate the ability of Mössbauer spectroscopy to access a variety of particle dynamics and static magnetic particle characteristics at the same time, offering an extensive characterization of ferrofluids for in-field applications; field-dependent particle alignment and particle mobility in terms of Brownian motion have been extracted simultaneously from a series of Mössbauer spectra for single-core particles as well as for particle agglomerates. Additionally, information on Néel superspin relaxation and surface spin frustration could be directly inferred from this analysis. Parameters regarding Brownian particle dynamics, as well as Néel-type relaxation behavior, obtained via Mössbauer spectroscopy, have been verified by complementary AC-susceptometry experiments, modulating the AC-field amplitude, and using an extended frequency range of 10-1 to 106 Hz, while field-dependent particle alignment has been cross-checked via magnetometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA