Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 241: 117544, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944689

RESUMO

This study addresses the urgent need for practical solutions to industrial water contamination. Utilizing Algerian Bentonite as an adsorbent due to its regional prevalence, we focused on the efficiency of the Bentonite/Sodium dodecylbenzene sulfonate (SDBS) matrix in Methylene Blue (MB) removal. The zero-charge point and IR spectroscopy characterized the adsorbent. Acidic pH facilitated SDBS adsorption on Bentonite, achieving equilibrium in 30 min with a pseudo-second-order model. The UPAC and Freundlich model indicated a qmax of 25.97 mg/g. SDBS adsorption was exothermic at elevated temperatures. The loaded Bentonite exhibited excellent MB adsorption (pH 3-9) with PSOM kinetics. Maximum adsorption capacity using IUPAC and GILES-recommended isotherms was qmax = 23.54 mg/g. The loaded Bentonite's specific surface area was 70.01 m2/g, and the Sips model correlated well with experimental data (R2 = 0.98). This study highlights adsorption, mainly Bentonite/SDBS matrices, as a promising approach for remediating polluted areas by efficiently capturing and removing surfactants and dyes, contributing valuable insights to address industrial water contamination challenges.


Assuntos
Bentonita , Poluentes Químicos da Água , Bentonita/química , Azul de Metileno , Águas Residuárias , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Adsorção , Cinética , Água
2.
Environ Sci Pollut Res Int ; 30(10): 27510-27524, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36385339

RESUMO

To keep up with the development of contaminants in the water supply, it is required to create new adsorbents or improve current ones. The adsorption capacity of AlPO4 electrocoagulated with varying current intensities was examined. AlPO4 was produced by electrolysis in a NaCl solution using aluminum electrodes and a 0.1 M phosphate buffer at varying current intensities. Current efficiency was enhanced. X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy were used to analyze the adsorbents (FTIR). The specific surface area was estimated by the quantity of methylene blue adsorbed by particles in an aqueous solution. Numerous operating factors must be addressed, including pH, starting concentration, adsorbent dose, and contact duration. The electrostatic interaction between positively charged MB molecules and negatively charged adsorbents drives adsorption at alkaline pH. When describing equilibrium adsorption, the Langmuir model is more accurate. Modeling using an adsorption isotherm may further improve the predicted specific surface area. At 0.2 amperes, the observed specific surface area was 2.86 m2/g.


Assuntos
Fosfatos , Poluentes Químicos da Água , Termodinâmica , Adsorção , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química , Azul de Metileno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA