Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6126, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033139

RESUMO

Obesity impairs tissue insulin sensitivity and signaling, promoting type-2 diabetes. Although improving insulin signaling is key to reversing diabetes, the multi-organ mechanisms regulating this process are poorly defined. Here, we screen the secretome and receptome in Drosophila to identify the hormonal crosstalk affecting diet-induced insulin resistance and obesity. We discover a complex interplay between muscle, neuronal, and adipose tissues, mediated by Bone Morphogenetic Protein (BMP) signaling and the hormone Bursicon, that enhances insulin signaling and sugar tolerance. Muscle-derived BMP signaling, induced by sugar, governs neuronal Bursicon signaling. Bursicon, through its receptor Rickets, a Leucine-rich-repeat-containing G-protein coupled receptor (LGR), improves insulin secretion and insulin sensitivity in adipose tissue, mitigating hyperglycemia. In mouse adipocytes, loss of the Rickets ortholog LGR4 blunts insulin responses, showing an essential role of LGR4 in adipocyte insulin sensitivity. Our findings reveal a muscle-neuronal-fat-tissue axis driving metabolic adaptation to high-sugar conditions, identifying LGR4 as a critical mediator in this regulatory network.


Assuntos
Tecido Adiposo , Resistência à Insulina , Obesidade , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Tecido Adiposo/metabolismo , Camundongos , Obesidade/metabolismo , Insulina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Adipócitos/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Músculos/metabolismo , Masculino , Músculo Esquelético/metabolismo , Drosophila melanogaster/metabolismo , Dieta Hiperlipídica/efeitos adversos , Neurônios/metabolismo , Camundongos Endogâmicos C57BL
2.
Curr Biol ; 32(7): 1548-1562.e6, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35245460

RESUMO

Nutrition is one of the most important influences on growth and the timing of maturational transitions including mammalian puberty and insect metamorphosis. Childhood obesity is associated with precocious puberty, but the assessment mechanism that links body fat to early maturation is unknown. During development, the intake of nutrients promotes signaling through insulin-like systems that govern the growth of cells and tissues and also regulates the timely production of the steroid hormones that initiate the juvenile-adult transition. We show here that the dietary lipid cholesterol, which is required as a component of cell membranes and as a substrate for steroid biosynthesis, also governs body growth and maturation in Drosophila via promoting the expression and release of insulin-like peptides. This nutritional input acts via the nutrient sensor TOR, which is regulated by the Niemann-Pick-type-C 1 (Npc1) cholesterol transporter, in the glia of the blood-brain barrier and cells of the adipose tissue to remotely drive systemic insulin signaling and body growth. Furthermore, increasing intracellular cholesterol levels in the steroid-producing prothoracic gland strongly promotes endoreduplication, leading to an accelerated attainment of a nutritional checkpoint that normally ensures that animals do not initiate maturation prematurely. These findings, therefore, show that a Npc1-TOR signaling system couples the sensing of the lipid cholesterol with cellular and systemic growth control and maturational timing, which may help explain both the link between cholesterol and cancer as well as the connection between body fat (obesity) and early puberty.


Assuntos
Proteínas de Drosophila , Obesidade Infantil , Animais , Colesterol , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Insulina/metabolismo , Larva , Mamíferos , Esteroides/metabolismo
3.
Nat Commun ; 13(1): 692, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121731

RESUMO

The intestine is a central regulator of metabolic homeostasis. Dietary inputs are absorbed through the gut, which senses their nutritional value and relays hormonal information to other organs to coordinate systemic energy balance. However, the gut-derived hormones affecting metabolic and behavioral responses are poorly defined. Here we show that the endocrine cells of the Drosophila gut sense nutrient stress through a mechanism that involves the TOR pathway and in response secrete the peptide hormone allatostatin C, a Drosophila somatostatin homolog. Gut-derived allatostatin C induces secretion of glucagon-like adipokinetic hormone to coordinate food intake and energy mobilization. Loss of gut Allatostatin C or its receptor in the adipokinetic-hormone-producing cells impairs lipid and sugar mobilization during fasting, leading to hypoglycemia. Our findings illustrate a nutrient-responsive endocrine mechanism that maintains energy homeostasis under nutrient-stress conditions, a function that is essential to health and whose failure can lead to metabolic disorders.


Assuntos
Proteínas de Drosophila/metabolismo , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Hormônios Gastrointestinais/metabolismo , Homeostase , Nutrientes/metabolismo , Somatostatina/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Células Enteroendócrinas/metabolismo , Hormônios Gastrointestinais/genética , Técnicas de Inativação de Genes , Humanos , Hipoglicemia/genética , Hipoglicemia/metabolismo , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Somatostatina/genética , Análise de Sobrevida
4.
Curr Protoc Pharmacol ; 81(1): e37, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29927074

RESUMO

Detergent-solubilized purified ion channels can be reconstituted into lipid bilayers for electrophysiological analysis. Traditionally, ion channels were inserted into vesicles and subsequently fused with planar "black lipid membranes" formed from lipids dissolved in a hydrophobic solvent such as decane. Provided in this article is a step-by-step guide to reconstitute purified ion channel proteins into giant unilamellar vesicles (GUVs). This procedure results in the formation of proteoliposomes that can be used for planar bilayer formation and electrophysiological characterization of single-channel currents. By using preformed GUVs it is possible to omit the membrane solvent. Compared to traditional preparations, the lipid bilayers formed from GUVs provide an environment that more closely resembles the native cell membrane. Also described is an alternate protocol that entails the production of planar lipid bilayers from GUVs onto which proteins in detergent are added. © 2018 by John Wiley & Sons, Inc.


Assuntos
Canais Iônicos/fisiologia , Bicamadas Lipídicas , Fenômenos Eletrofisiológicos , Proteolipídeos , Lipossomas Unilamelares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA