RESUMO
SUMMARY: Sensory receptor gene families have undergone extensive expansion and loss across vertebrate evolution, leading to significant variation in receptor counts between species. However, due to their species-specific nature, conventional reference-based annotation tools often underestimate the true number of sensory receptors in a given species. While there has been an exponential increase in the taxonomic diversity of publicly available genome assemblies in recent years, only â¼30% of vertebrate species on the NCBI database are currently annotated. To overcome these limitations, we developed 'Sensommatic', an automated and accessible sensory receptor annotation pipeline. Sensommatic implements BLAST and AUGUSTUS to mine and predict sensory receptor genes from whole genome assemblies, adopting a one-to-many gene mapping approach. While designed for vertebrates, Sensommatic can be extended to run on non-vertebrate species by generating customized reference files, making it a scalable and generalizable tool. AVAILABILITY AND IMPLEMENTATION: Source code and associated files are available at: https://github.com/GMHughes/Sensommatic.
Assuntos
Genoma , Software , Animais , Mapeamento Cromossômico , Vertebrados/genética , Anotação de Sequência MolecularRESUMO
The fungus Zymoseptoria tritici causes Septoria Tritici Blotch (STB), which is one of the most devastating diseases of wheat in Europe. There are currently no fully durable methods of control against Z. tritici, so novel strategies are urgently required. One of the ways in which fungi are able to respond to their surrounding environment is through the use of photoreceptor proteins which detect light signals. Although previous evidence suggests that Z. tritici can detect light, no photoreceptor genes have been characterised in this pathogen. This study characterises ZtWco-1, a predicted photoreceptor gene in Z. tritici. The ZtWco-1 gene is a putative homolog to the blue light photoreceptor from Neurospora crassa, wc-1. Z. tritici mutants with deletions in ZtWco-1 have defects in hyphal branching, melanisation and virulence on wheat. In addition, we identify the putative circadian clock gene ZtFrq in Z. tritici. This study provides evidence for the genetic regulation of light detection in Z. tritici and it open avenues for future research into whether this pathogen has a circadian clock.
Assuntos
Ascomicetos , Triticum , Ascomicetos/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia , Virulência/genéticaRESUMO
The role of structurally dynamic genomic regions in speciation is poorly understood due to challenges inherent in diploid genome assembly. Here we reconstructed the evolutionary dynamics of structural variation in five cat species by phasing the genomes of three interspecies F1 hybrids to generate near-gapless single-haplotype assemblies. We discerned that cat genomes have a paucity of segmental duplications relative to great apes, explaining their remarkable karyotypic stability. X chromosomes were hotspots of structural variation, including enrichment with inversions in a large recombination desert with characteristics of a supergene. The X-linked macrosatellite DXZ4 evolves more rapidly than 99.5% of the genome clarifying its role in felid hybrid incompatibility. Resolved sensory gene repertoires revealed functional copy number changes associated with ecomorphological adaptations, sociality and domestication. This study highlights the value of gapless genomes to reveal structural mechanisms underpinning karyotypic evolution, reproductive isolation and ecological niche adaptation.
Assuntos
Evolução Molecular , Genômica , Haplótipos/genética , Genoma/genética , Dosagem de GenesRESUMO
Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (~10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth's vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.
Assuntos
Eutérios , Evolução Molecular , Animais , Feminino , Humanos , Sequência Conservada/genética , Eutérios/genética , Genoma HumanoRESUMO
Wheat is one of the main staple food crops, and 775 million tonnes of wheat were produced worldwide in 2022. Fungal diseases such as Fusarium head blight, Septoria tritici blotch, spot blotch, tan spot, stripe rust, leaf rust, and powdery mildew cause serious yield losses in wheat and can impact quality. We aimed to investigate the incidence of spores from major fungal pathogens of cereals in the field by comparing microscopic and metagenomic based approaches for spore identification. Spore traps were set up in four geographically distinct UK wheat fields (Carnoustie, Angus; Bishop Burton, Yorkshire; Swindon, Wiltshire; and Lenham, Kent). Six major cereal fungal pathogen genera (Alternaria spp., Blumeria graminis, Cladosporium spp., Fusarium spp., Puccinia spp., and Zymoseptoria spp.) were found using these techniques at all sites. Using metagenomic and BLAST analysis, 150 cereal pathogen species (33 different genera) were recorded on the spore trap tapes. The metagenomic BLAST analysis showed a higher accuracy in terms of species-specific identification than the taxonomic tool software Kraken2 or microscopic analysis. Microscopic data from the spore traps was subsequently correlated with weather data to examine the conditions which promote ascospore release of Fusarium spp. and Zymoseptoria spp. This revealed that Zymoseptoria spp. and Fusarium spp. ascospore release show a positive correlation with relative humidity (%RH). Whereas air temperature (°C) negatively affects Zymoseptoria spp. ascospore release.
RESUMO
Relationships among laurasiatherian clades represent one of the most highly disputed topics in mammalian phylogeny. In this study, we attempt to disentangle laurasiatherian interordinal relationships using two independent genome-level approaches: (1) quantifying retrotransposon presence/absence patterns, and (2) comparisons of exon datasets at the levels of nucleotides and amino acids. The two approaches revealed contradictory phylogenetic signals, possibly due to a high level of ancestral incomplete lineage sorting. The positions of Eulipotyphla and Chiroptera as the first and second earliest divergences were consistent across the approaches. However, the phylogenetic relationships of Perissodactyla, Cetartiodactyla, and Ferae, were contradictory. While retrotransposon insertion analyses suggest a clade with Cetartiodactyla and Ferae, the exon dataset favoured Cetartiodactyla and Perissodactyla. Future analyses of hitherto unsampled laurasiatherian lineages and synergistic analyses of retrotransposon insertions, exon and conserved intron/intergenic sequences might unravel the conflicting patterns of relationships in this major mammalian clade.