Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 16(16)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39203888

RESUMO

Although gut dysbiosis is associated with cow's milk allergy (CMA), causality remains uncertain. This study aimed to identify specific bacterial signatures that influence the development and outcome of the disease. We also investigated the effect of hypoallergenic formula (HF) consumption on the gut microbiome of milk-allergic children. 16S rRNA amplicon sequencing was applied to characterize the gut microbiome of 32 milk-allergic children aged 5-12 years and 36 age-matched healthy controls. We showed that the gut microbiome of children with CMA differed significantly from that of healthy children, regardless of whether they consumed cow's milk. Compared to that of healthy cow's milk consumers, it was depleted in Bifidobacterium, Coprococcus catus, Monoglobus, and Lachnospiraceae GCA-900066575, while being enriched in Oscillibacter valericigenes, Negativibacillus massiliensis, and three genera of the Ruminococcaceae family. Of these, only the Ruminococcaceae taxa were also enriched in healthy children not consuming cow's milk. Furthermore, the gut microbiome of children who developed tolerance and had received an HF was similar to that of healthy children, whereas that of children who had not received an HF was significantly different. Our results demonstrate that specific gut microbiome signatures are associated with CMA, which differ from those of dietary milk elimination. Moreover, HF consumption affects the gut microbiome of children who develop tolerance.


Assuntos
Microbioma Gastrointestinal , Hipersensibilidade a Leite , Leite , RNA Ribossômico 16S , Humanos , Hipersensibilidade a Leite/microbiologia , Pré-Escolar , Criança , Feminino , Masculino , Animais , RNA Ribossômico 16S/genética , Leite/microbiologia , Disbiose/microbiologia , Bactérias/classificação , Bactérias/genética , Bovinos , Estudos de Casos e Controles , Fezes/microbiologia
2.
Front Microbiol ; 14: 1334623, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260868

RESUMO

To support personalized diets targeting the gut microbiota, we employed an in vitro digestion-fermentation model and 16S rRNA gene sequencing to analyze the microbiota growing on representative foods of the Mediterranean and Western diets, as well as the influence of cooking methods. Plant- and animal-derived foods had significantly different impacts on the abundances of bacterial taxa. Animal and vegetable fats, fish and dairy products led to increases in many taxa, mainly within the Lachnospiraceae. In particular, fats favored increases in the beneficial bacteria Faecalibacterium, Blautia, and Roseburia. However, butter, as well as gouda cheese and fish, also resulted in the increase of Lachnoclostridium, associated to several diseases. Frying and boiling produced the most distinct effects on the microbiota, with members of the Lachnospiraceae and Ruminococcaceae responding the most to the cooking method employed. Nevertheless, cooking effects were highly individualized and food-dependent, challenging the investigation of their role in personalized diets.

3.
Front Microbiol ; 13: 880484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722300

RESUMO

In the gastrointestinal tract (GIT), the immune system interacts with a variety of microorganisms, including pathogens as well as beneficial symbionts that perform important physiological functions for the host and are crucial to sustain intestinal homeostasis. In normal conditions, secretory immunoglobulin A (SIgA) is the principal antibody produced by B cells in the GIT mucosa. Polyreactivity provides certain SIgA molecules with the ability of binding different antigens in the bacterial surface, such as O-antigens and teichoic acids, while cross-species reactivity allows them to recognize and interact with different types of bacteria. These functions may be crucial in allowing SIgA to modulate the complex gut microbiota in an efficient manner. Several studies suggest that SIgA can help with the retention and proliferation of helpful members of the gut microbiota. Gut microbiota alterations in people with IgA deficiency include the lack of some species that are known to be normally coated by SIgA. Here, we discuss the different ways in which SIgA behaves in relation to pathogens and beneficial bacteria of the gut microbiota and how the immune system might protect and facilitate the establishment and maintenance of certain gut symbionts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA