Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38793819

RESUMO

Ultrafast X-ray computed tomography is an advanced imaging technique for multiphase flows. It has been used with great success for studying gas-liquid as well as gas-solid flows. Here, we apply this technique to analyze density-driven particle segregation in a rotating drum as an exemplary use case for analyzing industrial particle mixing systems. As glass particles are used as the denser of two granular species to be mixed, beam hardening artefacts occur and hamper the data analysis. In the general case of a distribution of arbitrary materials, the inverse problem of image reconstruction with energy-dependent attenuation is often ill-posed. Consequently, commonly known beam hardening correction algorithms are often quite complex. In our case, however, the number of materials is limited. We therefore propose a correction algorithm simplified by taking advantage of the known material properties, and demonstrate its ability to improve image quality and subsequent analyses significantly.

2.
Soft Matter ; 16(3): 695-702, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31815273

RESUMO

The attachment of solid particles to the surface of immersed gas bubbles plays a fundamental role in surface science, and hence plays key roles in various engineering fields ranging from industrial separation processes to the fabrication of functional materials. However, detailed investigation from a microscopic view on how a single particle attaches to a bubble surface and how the particle properties affect the attachment behavior has been so far scarcely addressed. Here, we observed the attachment of a single particle to a bubble surface using a high-speed camera and systematically investigated the effects of the wettability and shape of particles. We found that hydrophobic particles abruptly "jumped into" the bubble while sliding down the bubble surface to eventually satisfy their static contact angles, the behavior of which induced a much stronger attachment to the bubble surface. Interestingly, the determinant factor for the attachment efficiency of spherical particles was not the wettability of the spherical particles but the location of the initial collision with the bubble surface. In contrast, the attachment efficiency of anisotropically-shaped particles was found to increase with the hydrophobicity caused by a larger contact area to the bubble surface. Last but not least, a simple formulation is suggested to recover the contact angle based on the jump-in behavior.

3.
J Biomech ; 41(13): 2855-9, 2008 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-18718594

RESUMO

In front crawl swimming, the hand and the corresponding forearm generate major propulsive forces. Such forces have been studied largely through experimental tests and more recently through the use of steady computational fluid dynamics (CFD). However, the effect of the upper arm on the propulsive forces has generally not been taken into consideration. An understanding of such forces is fundamental for the performance of swimmers who have an arm amputation at the level of the elbow. This study introduces the great potential offered by the multidisciplinary approach combining reverse engineering and unsteady CFD in a novel dynamic and interactive way. A complex CFD mesh model, representing the swimmer body and its upper arm, is produced. The model, including the arm rotation and a body roll movement, interacts dynamically with the fluid flow. Forces generated by the upper arm can then be investigated in great detail. In this particular study, it is found that the upper arm effectively contributes to the propulsion of the body. The propulsive force was numerically computed throughout the pull and reaches maxima of 8 N. Results obtained in this study could be extended in a similar way to any other limb movement within a fluid flow.


Assuntos
Amputados , Braço , Fenômenos Biomecânicos/fisiologia , Movimento/fisiologia , Natação/fisiologia , Engenharia/métodos , Feminino , Humanos , Modelos Anatômicos , Atividade Motora/fisiologia
4.
Phys Rev E ; 95(6-1): 063107, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28709228

RESUMO

A consistent formulation is presented for the direct numerical simulation of an arbitrarily shaped colloidal particle at a deformable fluidic interface. The rigid colloidal particle is decomposed into a collection of solid spherical beads and the three-phase boundaries are replaced with smoothly spreading interfaces. The major merit of the present formulation lies in the ease with which the geometrical decomposition of the colloidal particle is implemented, yet allows the dynamic simulation of intricate three-dimensional colloidal shapes in a binary fluid. The dynamics of a rodlike, a platelike, and a ringlike particle are presently tested. It is found that platelike particles attach more rapidly to a fluidic interface and are subsequently harder to dislodge when subject to an external force. Using the Bond number, i.e., the ratio of the gravitational force to the reference capillary force, a spherical particle with equal affinity for the two fluids breaks away from a fluidic interface at the critical value Bo=0.75. This value is in line with our numerical experiments. It is here shown that a plate and a ring of equivalent masses detach at greater critical Bond numbers approximately equal to Bo=1.3. Results of this study will find applications in the stabilization of emulsions by colloids and in the recovery of colloidal particles by rising bubbles.

5.
J Biomech ; 43(6): 1111-7, 2010 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-20106479

RESUMO

Only a limited amount of research has gone into evaluating the contribution made by the upper arm to the propulsion of elite swimmers with an amputation at elbow level. With assistance of computational fluid dynamics (CFD) modelling, the swimming technique of competitive arm amputee swimmers can be assessed through numerical simulations which test the effect of various parameters on the effectiveness of the swimming propulsion. This numerical study investigates the effect of body roll amplitude and of upper arm rotation speed on the propulsion of an arm amputee swimmer, at different mean swimming speeds. Various test cases are simulated resulting in a thorough analysis of the complex body/fluid interaction with a detailed quantitative assessment of the effect of the variation of each parameter on the arm propulsion. It is found that a body roll movement with an amplitude of 45 degrees enhances greatly the propulsive contribution from the upper arm with an increase of about 70% in the propulsive force compared to the no roll condition. An increase in the angular velocity of the upper arm also leads to a concomitant increase in the propulsive forces produced by the arm. Such results have direct implications for competitive arm amputee front crawl swimmers and for those who coach them. One important message that emerges in this present work is that there exists, for any given swimming speed, a minimum angular velocity at which the upper arm must be rotated to generate effective propulsion. Below this velocity, the upper arm will experience a net resistive drag force which adversely affects swimming performance.


Assuntos
Amputados , Braço/fisiologia , Modelos Biológicos , Natação/fisiologia , Fenômenos Biomecânicos , Simulação por Computador , Feminino , Humanos , Reologia , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA