Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Eur J Neurosci ; 55(4): 1051-1062, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32813905

RESUMO

The endocannabinoid system is implicated in a plethora of neuropsychiatric disorders. However, it is technically challenging to assess the turnover of 2-arachidonoyl glycerol (2-AG), the principal endocannabinoid molecule in the brain. Two recent studies showed that diacylglycerol lipase α (DAGLα), an enzyme chiefly responsible for the cerebral production of 2-AG, also accepts the surrogate chromogenic substrate 4-nitrophenyl butyrate (4-NPB). Here, we aimed to optimize this spectrophotometric assay for ex vivo brain tissue, in particular, rat cerebrocortical homogenates, to measure the activity of the major enzymes responsible for the production and degradation of 2-AG. The initial velocity of 4-NPB hydrolysis was dependent on protein, substrate, and Ca2+ concentrations, and was sensitive to the non-selective serine hydrolase inhibitor, methoxy arachidonyl fluorophosphonate, the DAGLα inhibitors, OMDM188, tetrahydrolipstatin, and RHC80267, as well as the monoacylglycerol lipase (MAGL) inhibitor, JZL184, respectively. Next, we tested the usefulness of this assay in ex vivo brain tissue of rat models of human health conditions known to affect cerebrocortical 2-AG production, i.e. pathological stress and sporadic Alzheimer's disease (AD). In rats submitted to chronic restraint stress, cortical CB1 R density was significantly decreased, as assessed with radioligand binding. Nevertheless, 4-NPB hydrolysis remained at control levels. However, in rats 4 weeks after intracerebroventricular injection with streptozotocin - an established model of sporadic AD -, both CB1 R levels and 4-NPB hydrolysis and its DAGL- and MAGL-dependent fractions were significantly increased. Altogether, we optimized a simple complementary ex vivo technique for the quantification of DAGL and MAGL activity in brain samples.


Assuntos
Doença de Alzheimer , Endocanabinoides , Animais , Córtex Cerebral/metabolismo , Endocanabinoides/metabolismo , Glicerol , Monoacilglicerol Lipases/metabolismo , Ratos , Receptor CB1 de Canabinoide/metabolismo
2.
Sensors (Basel) ; 22(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36146360

RESUMO

BACKGROUND: Direct and real-time monitoring of lactate in the extracellular space can help elucidate the metabolic and modulatory role of lactate in the brain. Compared to in vivo studies, brain slices allow the investigation of the neural contribution separately from the effects of cerebrovascular response and permit easy control of recording conditions. METHODS: We have used a platinized carbon fiber microelectrode platform to design an oxidase-based microbiosensor for monitoring lactate in brain slices with high spatial and temporal resolution operating at 32 °C. Lactate oxidase (Aerococcus viridans) was immobilized by crosslinking with glutaraldehyde and a layer of polyurethane was added to extend the linear range. Selectivity was improved by electropolymerization of m-phenylenediamine and concurrent use of a null sensor. RESULTS: The lactate microbiosensor exhibited high sensitivity, selectivity, and optimal analytical performance at a pH and temperature compatible with recording in hippocampal slices. Evaluation of operational stability under conditions of repeated use supports the suitability of this design for up to three repeated assays. CONCLUSIONS: The microbiosensor displayed good analytical performance to monitor rapid changes in lactate concentration in the hippocampal tissue in response to potassium-evoked depolarization.


Assuntos
Técnicas Biossensoriais , Ácido Láctico , Encéfalo/metabolismo , Fibra de Carbono , Enzimas Imobilizadas/metabolismo , Glutaral , Microeletrodos , Oxirredutases/metabolismo , Poliuretanos , Potássio/metabolismo
3.
Molecules ; 27(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35056837

RESUMO

Direct in vivo measurements of neurometabolic markers in the brain with high spatio-temporal resolution, sensitivity, and selectivity is highly important to understand neurometabolism. Electrochemical biosensors based on microelectrodes are very attractive analytical tools for continuous monitoring of neurometabolic markers, such as lactate and glucose in the brain extracellular space at resting and following neuronal activation. Here, we assess the merits of a platinized carbon fiber microelectrode (CFM/Pt) as a sensing platform for developing enzyme oxidase-based microbiosensors to measure extracellular lactate in the brain. Lactate oxidase was immobilized on the CFM/Pt surface by crosslinking with glutaraldehyde. The CFM/Pt-based lactate microbiosensor exhibited high sensitivity and selectivity, good operational stability, and low dependence on oxygen, temperature, and pH. An array consisting of a glucose and lactate microbiosensors, including a null sensor, was used for concurrent measurement of both neurometabolic substrates in vivo in the anesthetized rat brain. Rapid changes of lactate and glucose were observed in the cortex and hippocampus in response to local glucose and lactate application and upon insulin-induced fluctuations of systemic glucose. Overall, these results indicate that microbiosensors are a valuable tool to investigate neurometabolism and to better understand the role of major neurometabolic markers, such as lactate and glucose.


Assuntos
Técnicas Biossensoriais/instrumentação , Encéfalo/metabolismo , Glucose/análise , Ácido Láctico/análise , Oxigenases de Função Mista/metabolismo , Animais , Fibra de Carbono/química , Técnicas Eletroquímicas , Enzimas Imobilizadas/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Masculino , Microeletrodos , Ratos , Ratos Wistar
4.
Neurochem Res ; 46(1): 64-76, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32193753

RESUMO

In this review, we address the regulatory and toxic role of ·NO along several pathways, from the gut to the brain. Initially, we address the role on ·NO in the regulation of mitochondrial respiration with emphasis on the possible contribution to Parkinson's disease via mechanisms that involve its interaction with a major dopamine metabolite, DOPAC. In parallel with initial discoveries of the inhibition of mitochondrial respiration by ·NO, it became clear the potential for toxic ·NO-mediated mechanisms involving the production of more reactive species and the post-translational modification of mitochondrial proteins. Accordingly, we have proposed a novel mechanism potentially leading to dopaminergic cell death, providing evidence that NO synergistically interact with DOPAC in promoting cell death via mechanisms that involve GSH depletion. The modulatory role of NO will be then briefly discussed as a master regulator on brain energy metabolism. The energy metabolism in the brain is central to the understanding of brain function and disease. The core role of ·NO in the regulation of brain metabolism and vascular responses is further substantiated by discussing its role as a mediator of neurovascular coupling, the increase in local microvessels blood flow in response to spatially restricted increase of neuronal activity. The many facets of NO as intracellular and intercellular messenger, conveying information associated with its spatial and temporal concentration dynamics, involve not only the discussion of its reactions and potential targets on a defined biological environment but also the regulation of its synthesis by the family of nitric oxide synthases. More recently, a novel pathway, out of control of NOS, has been the subject of a great deal of controversy, the nitrate:nitrite:NO pathway, adding new perspectives to ·NO biology. Thus, finally, this novel pathway will be addressed in connection with nitrate consumption in the diet and the beneficial effects of protein nitration by reactive nitrogen species.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Acoplamento Neurovascular/fisiologia , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Humanos , Mitocôndrias/metabolismo , Doença de Parkinson/fisiopatologia
5.
Anal Biochem ; 551: 43-50, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29753719

RESUMO

The evaluation of mitochondrial function provides the basis for the study of brain bioenergetics. However, analysis of brain mitochondrial respiration has been hindered by the low yield associated with mitochondria isolation procedures. Furthermore, isolating mitochondria or cells results in loss of the inherent complexity of the central nervous system. High-resolution respirometry (HRR), is a valuable tool to study mitochondrial function and has been used in diverse biological preparations ranging from isolated mitochondria to tissue homogenates and permeabilized tissue biopsies. Here we describe a novel methodology for evaluation of mitochondrial respiration using tissue preparations from the central nervous system, namely acute hippocampal slices from rodents, with HRR. By using acute intact hippocampal slices, tissue cytoarchitecture, intercellular communication and connectivity are preserved. Mitochondrial respiration was evaluated by using an adapted substrate-uncoupler-inhibitor titration (SUIT) protocol and the expected responses were observed. This methodology can be used to detect differences in mitochondrial function at the oxidative phosphorylation level and for studies with different brain oxidative substrates in physiological and neuropathological settings, by using a system that better represents the in vivo conditions than isolated mitochondria and/or cells.


Assuntos
Encéfalo/metabolismo , Hipocampo/metabolismo , Consumo de Oxigênio , Animais , Respiração Celular , Metabolismo Energético , Feminino , Técnicas In Vitro , Cinética , Masculino , Camundongos , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Ratos , Ratos Wistar
6.
Anal Chem ; 89(22): 12383-12390, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29067809

RESUMO

Seizures are paroxysmal events in which increased neuronal activity is accompanied by an increase in localized energetic demand. The ability to simultaneously record electrical and chemical events using a single sensor poses a promising approach to identify seizure onset zones in the brain. In the present work, we used ceramic-based platinum microelectrode arrays (MEAs) to perform high-frequency amperometric recording of local pO2 and local field potential (LFP)-related currents during seizures in the hippocampus of chronically implanted freely moving rats. Resting levels of O2 in the rodent brain varied between 6.6 ± 0.7 µM in the dentate gyrus (DG) region of the hippocampus and 22.1 ± 4.9 µM in the cerebral cortex. We also observed an expected increase in hippocampal pO2 (15 ± 4% from baseline) in response to tail pinch stress paradigm. Finally, induction of status epilepticus by intrahippocampal injection of pilocarpine induced biphasic changes in pO2 in the hippocampus. The initial dip at seizure onset (ΔO2 = -4.5 ± 0.7 µM) was followed by a prolonged hyperoxygenation phase (ΔO2 = +10.4 ± 2.9 µM). By acquiring the amperometry signal with a high sampling rate of 100 Hz we decomposed the raw signal in an oximetry recording (<1 Hz) and LFP recording (>1 Hz), demonstrating that each individual Pt site can simultaneously report changes in local pO2 and LFP-related currents during pilocarpine-induced seizure activity. This has high potential for translation into the clinical setting supported on intracranial grid or strip electrodes.


Assuntos
Técnicas Eletroquímicas , Epilepsia/diagnóstico , Oximetria , Oxigênio/sangue , Animais , Fenômenos Eletrofisiológicos , Epilepsia/sangue , Masculino , Microeletrodos , Ratos , Ratos Wistar
7.
Anal Chem ; 89(3): 1674-1683, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28208270

RESUMO

Ceramic-based multisite Pt microelectrode arrays (MEAs) were characterized for their basic electrochemical characteristics and used for in vivo measurements of oxygen with high resolution in the brain extracellular space. The microelectrode array sites showed a very smooth surface mainly composed of thin-film polycrystalline Pt, with some apparent nanoscale roughness that was not translated into an increased electrochemical active surface area. The electrochemical cyclic voltammetric behavior was characteristic of bulk Pt in both acidic and neutral media. In addition, complex plane impedance spectra showed the required low impedance (0.22 MΩ; 10.8 Ω cm2) at 1 kHz and very smooth electrode surfaces. The oxygen reduction reaction on the Pt surface proceeds as a single 4-electron reduction pathway at -0.6 V vs Ag/AgCl reference electrode. Cyclic voltammetry and amperometry demonstrate excellent electrocatalytic activity toward oxygen reduction in addition to a high sensitivity (-0.16 ± 0.02 nA µM-1) and a low limit of detection (0.33 ± 0.20 µM). Thus, these Pt MEAs provide an excellent microelectrode platform for multisite O2 recording in vivo in the extracellular space of the brain, demonstrated in anaesthetized rats, and hold promise for future in vivo studies in animal models of CNS disease and dysfunction.


Assuntos
Encéfalo/metabolismo , Cerâmica/química , Espectroscopia Dielétrica , Oxigênio/análise , Platina/química , Animais , Catálise , Eletrólitos/química , Masculino , Microeletrodos , Oxigênio/química , Ratos , Ratos Wistar
8.
Cell Mol Neurobiol ; 35(1): 33-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25274046

RESUMO

The increase in life expectancy is accompanied by an increased risk of developing neurodegenerative disorders and age is the most relevant risk factor for the appearance of cognitive decline. While decreased neuronal count has been proposed to be a major contributing factor to the appearance of age-associated cognitive decline, it appears to be insufficient to fully account for the decay in mental function in aged individuals. Nitric oxide ((•)NO) is a ubiquitous signaling molecule in the mammalian central nervous system. Closely linked to the activation of glutamatergic transmission in several structures of the brain, neuron-derived (•)NO can act as a neuromodulator in synaptic plasticity but has also been linked to neuronal toxicity and degenerative processes. Many studies have proposed that changes in the glutamate-(•)NO signaling pathway may be implicated in age-dependent cognitive decline and that the exact effect of such changes may be region specific. Due to its peculiar physical-chemical properties, namely hydrophobicity, small size, and rapid diffusion properties, the rate and pattern of (•)NO concentration changes are critical determinants for the understanding of its bioactivity in the brain. Here we show a detailed study of how (•)NO concentration dynamics change in the different regions of the brain of Fisher 344 rats (F344) during aging. Using microelectrodes inserted into the living brain of anesthetized F344 rats, we show here that glutamate-induced (•)NO concentration dynamics decrease in the hippocampus, striatum, and cerebral cortex as animals age. performance in behavior testing of short-term and spatial memory, suggesting that the impairment in the glutamate:nNOS pathway represents a functional critical event in cognitive decline during aging.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Óxido Nítrico/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Eletrodos Implantados , Masculino , Memória/fisiologia , Atividade Motora/fisiologia , Ratos , Ratos Endogâmicos F344
9.
Talanta ; 268(Pt 1): 125302, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37826935

RESUMO

Epilepsy is a prevalent neurological disorder with a complex pathogenesis and unpredictable nature, presenting limited treatment options in >30 % of affected individuals. Neurometabolic abnormalities have been observed in epilepsy patients, suggesting a disruption in the coupling between neural activity and energy metabolism in the brain. In this study, we employed amperometric biosensors based on a modified carbon fiber microelectrode platform to directly and continuously measure lactate and oxygen dynamics in the brain extracellular space. These biosensors demonstrated high sensitivity, selectivity, and rapid response time, enabling in vivo measurements with high temporal and spatial resolution. In vivo recordings in the cortex of anaesthetized rats revealed rapid and multiphasic fluctuations in extracellular lactate and oxygen levels following neuronal stimulation with high potassium. Furthermore, real-time measurement of lactate and oxygen concentration dynamics concurrently with network electrical activity during status epilepticus induced by 4-aminopyridine (4-AP) demonstrated phasic changes in lactate levels that correlated with bursts of electrical activity, while tonic levels of lactate remained stable during seizures. This study highlights the complex interplay between lactate dynamics, electrical activity, and oxygen utilization in epileptic seizures.


Assuntos
Técnicas Biossensoriais , Epilepsia , Estado Epiléptico , Humanos , Ratos , Animais , Ácido Láctico/metabolismo , Oxigênio , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Encéfalo/metabolismo , Convulsões/metabolismo , 4-Aminopiridina
10.
Biofactors ; 49(4): 875-886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37070143

RESUMO

Under physiological conditions, the energetic demand of the brain is met by glucose oxidation. However, ample evidence suggests that lactate produced by astrocytes through aerobic glycolysis may also be an oxidative fuel, highlighting the metabolic compartmentalization between neural cells. Herein, we investigate the roles of glucose and lactate in oxidative metabolism in hippocampal slices, a model that preserves neuron-glia interactions. To this purpose, we used high-resolution respirometry to measure oxygen consumption (O2 flux) at the whole tissue level and amperometric lactate microbiosensors to evaluate the concentration dynamics of extracellular lactate. We found that lactate is produced from glucose and transported to the extracellular space by neural cells in hippocampal tissue. Under resting conditions, endogenous lactate was used by neurons to support oxidative metabolism, which was boosted by exogenously added lactate even in the presence of excess glucose. Depolarization of hippocampal tissue with high K+ significantly increased the rate of oxidative phosphorylation, which was accompanied by a transient decrease in extracellular lactate concentration. Both effects were reverted by inhibition of the neuronal lactate transporter, monocarboxylate transporters 2 (MCT2), supporting the concept of an inward flux of lactate to neurons to fuel oxidative metabolism. We conclude that astrocytes are the main source of extracellular lactate which is used by neurons to fuel oxidative metabolism, both under resting and stimulated conditions.


Assuntos
Metabolismo Energético , Ácido Láctico , Metabolismo Energético/fisiologia , Ácido Láctico/metabolismo , Astrócitos/metabolismo , Neurônios/metabolismo , Glucose/metabolismo , Glicólise/fisiologia , Hipocampo/metabolismo , Estresse Oxidativo
11.
Biosens Bioelectron ; 199: 113874, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34920228

RESUMO

Highly sensitive and selective nanostructured lactate and glucose microbiosensors for their in vivo simultaneous determination in rat brain were developed based on carbon fiber microelectrodes (CFM) modified with nanoporous gold (NPG) using the Dynamic Hydrogen Bubble Template (DHBT) method. Electrodeposition of platinum nanoparticles (PtNP) onto the NPG film enhances the sensitivity and the electrocatalytic properties towards H2O2 detection. The nanostructured microelectrode platform was modified by glucose oxidase (GOx) and lactate oxidase (LOx) enzyme immobilization. High selective measurements were achieved by covering with a perm-selective layer of electropolymerized m-phenylenediamine, deposition of a Nafion® film and by using a null sensor. The morphological characteristics and electroanalytical performance of the microbiosensors were assessed, by scanning electron microscopy and electrochemical techniques, respectively. The PtNP/NPG/CFM shows a high sensitivity to H2O2 (5.96 A M-1 cm-2) at 0.36 V vs. Ag/AgCl, with a linear range from 0.2 to 200 µM, and an LOD of 10 nM. The microbiosensors were applied to the simultaneous determination of lactate and glucose in blood serum samples. Moreover, the basal extracellular concentrations of lactate and glucose were measured in vivo in four different rat brain structures. These results support the potential of the microbiosensor to be used as a valuable tool to investigate brain neurochemicals in vivo.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanoporos , Animais , Encéfalo/metabolismo , Técnicas Eletroquímicas , Enzimas Imobilizadas/metabolismo , Glucose , Glucose Oxidase/metabolismo , Peróxido de Hidrogênio , Lactatos , Platina , Ratos , Soro
12.
Eur Arch Psychiatry Clin Neurosci ; 261(5): 313-22, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21188405

RESUMO

Gray matter (GM) volume deficits have been described in patients with schizophrenia (Sz) and bipolar disorder (BD), but to date, few studies have directly compared GM volumes between these syndromes with methods allowing for whole-brain comparisons. We have used structural magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) to compare GM volumes between 38 Sz and 19 BD chronic patients. We also included 24 healthy controls. The results revealed a widespread cortical (dorsolateral and medial prefrontal and precentral) and cerebellar deficit as well as GM deficits in putamen and thalamus in Sz when compared to BD patients. Besides, a subcortical GM deficit was shown by Sz and BD groups when compared to the healthy controls, although a putaminal reduction was only evident in the Sz patients. In this comparison, the BD patients showed a limited cortical and subcortical GM deficit. These results support a partly different pattern of GM deficits associated to chronic Sz and chronic BD, with some degree of overlapping.


Assuntos
Transtorno Bipolar/patologia , Encéfalo/patologia , Esquizofrenia/patologia , Adulto , Mapeamento Encefálico , Doença Crônica , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica
13.
J Alzheimers Dis ; 82(4): 1619-1633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34219714

RESUMO

BACKGROUND: Ample evidence from clinical and pre-clinical studies suggests mid-life hypercholesterolemia as a risk factor for developing Alzheimer's disease (AD) at a later age. Hypercholesterolemia induced by dietary habits can lead to vascular perturbations that increase the risk of developing sporadic AD. OBJECTIVE: To investigate the effects of a high fat/cholesterol diet (HFCD) as a risk factor for AD by using a rodent model of AD and its correspondent control (healthy animals). METHODS: We compared the effect of a HFCD in normal mice (non-transgenic mice, NTg) and the triple transgenic mouse model of AD (3xTgAD). We evaluated cognitive performance in relation to changes in oxidative metabolism and neuron-derived nitric oxide (•NO) concentration dynamics in hippocampal slices as well as histochemical staining of markers of the neurovascular unit. RESULTS: In NTg, the HFCD produced only moderate hypercholesterolemia but significant decline in spatial memory was observed. A tendency for decrease in •NO production was accompanied by compromised mitochondrial function with decrease in spare respiratory capacity. In 3xTgAD mice, a robust increase in plasma cholesterol levels with the HFCD did not worsen cognitive performance but did induce compromise of mitochondrial function and significantly decreased •NO production. We found increased staining of biomarkers for astrocyte endfeet and endothelial cells in 3xTgAD hippocampi, which was further increased by the HFCD. CONCLUSION: A short term (8 weeks) intervention with HFCD can produce an AD-like phenotype even in the absence of overt systemic hypercholesterolemia and highlights mitochondrial dysfunction as a link between hypercholesterolemia and sporadic AD.


Assuntos
Doença de Alzheimer/genética , Colesterol/metabolismo , Dieta Hiperlipídica , Hipocampo/metabolismo , Camundongos Transgênicos , Mitocôndrias/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos
14.
Biosensors (Basel) ; 11(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34436079

RESUMO

The impaired blood flow to the brain causes a decrease in the supply of oxygen that can result in cerebral ischemia; if the blood flow is not restored quickly, neuronal injury or death will occur. Under hypoxic conditions, the production of nitric oxide (●NO), via the classical L-arginine-●NO synthase pathway, is reduced, which can compromise ●NO-dependent vasodilation. However, the alternative nitrite (NO2-) reduction to ●NO, under neuronal hypoxia and ischemia conditions, has been viewed as an in vivo storage pool of ●NO, complementing its enzymatic synthesis. Brain research is thus demanding suitable tools to probe nitrite's temporal and spatial dynamics in vivo. In this work, we propose a new method for the real-time measurement of nitrite concentration in the brain extracellular space, using fast-scan cyclic voltammetry (FSCV) and carbon microfiber electrodes as sensing probes. In this way, nitrite was detected anodically and in vitro, in the 5-500 µM range, in the presence of increasing physiological concentrations of ascorbate (100-500 µM). These sensors were then tested for real-time and in vivo recordings in the anesthetized rat hippocampus; using fast electrochemical techniques, local and reproducible transients of nitrite oxidation signals were observed, upon pressure ejection of an exogenous nitrite solution into the brain tissue. Nitrite microsensors are thus a valuable tool for investigating the role of this inorganic anion in brain redox signaling.


Assuntos
Ácido Ascórbico , Encéfalo , Nitritos , Animais , Técnicas Eletroquímicas , Espaço Extracelular , Masculino , Microeletrodos , Neurônios , Óxido Nítrico , Oxirredução , Oxigênio , Ratos
15.
Acta Ophthalmol ; 98(6): e715-e721, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31981283

RESUMO

PURPOSE: Recent advances in deep learning have seen an increase in its application to automated image analysis in ophthalmology for conditions with a high prevalence. We wanted to identify whether deep learning could be used for the automated classification of optical coherence tomography (OCT) images from patients with Stargardt disease (STGD) using a smaller dataset than traditionally used. METHODS: Sixty participants with STGD and 33 participants with a normal retinal OCT were selected, and a single OCT scan containing the centre of the fovea was selected as the input data. Two approaches were used: Model 1 - a pretrained convolutional neural network (CNN); Model 2 - a new CNN architecture. Both models were evaluated on their accuracy, sensitivity, specificity and Jaccard similarity score (JSS). RESULTS: About 102 OCT scans from participants with a normal retinal OCT and 647 OCT scans from participants with STGD were selected. The highest results were achieved when both models were implemented as a binary classifier: Model 1 - accuracy 99.6%, sensitivity 99.8%, specificity 98.0% and JSS 0.990; Model 2 - accuracy 97.9%, sensitivity 97.9%, specificity 98.0% and JSS 0.976. CONCLUSION: The deep learning classification models used in this study were able to achieve high accuracy despite using a smaller dataset than traditionally used and are effective in differentiating between normal OCT scans and those from patients with STGD. This preliminary study provides promising results for the application of deep learning to classify OCT images from patients with inherited retinal diseases.


Assuntos
Aprendizado Profundo , Doença de Stargardt/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Curva ROC , Índice de Gravidade de Doença , Doença de Stargardt/patologia
16.
Micromachines (Basel) ; 11(7)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605324

RESUMO

The intracranial measurement of local cerebral tissue oxygen levels-PbtO2-has become a useful tool for the critical care unit to investigate severe trauma and ischemia injury in patients. Our preliminary work in animal models supports the hypothesis that multi-site depth electrode recording of PbtO2 may give surgeons and critical care providers needed information about brain viability and the capacity for better recovery. Here, we present a surface morphology characterization and an electrochemical evaluation of the analytical properties toward oxygen detection of an FDA-approved, commercially available, clinical grade depth recording electrode comprising 12 Pt recording contacts. We found that the surface of the recording sites is composed of a thin film of smooth Pt and that the electrochemical behavior evaluated by cyclic voltammetry in acidic and neutral electrolyte is typical of polycrystalline Pt surface. The smoothness of the Pt surface was further corroborated by determination of the electrochemical active surface, confirming a roughness factor of 0.9. At an optimal working potential of -0.6 V vs. Ag/AgCl, the sensor displayed suitable values of sensitivity and limit of detection for in vivo PbtO2 measurements. Based on the reported catalytical properties of Pt toward the electroreduction reaction of O2, we propose that these probes could be repurposed for multisite monitoring of PbtO2 in vivo in the human brain.

17.
Bioelectrochemistry ; 130: 107325, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31295700

RESUMO

In order to understand how energy metabolism adapts to changes in neuronal activity it is imperative to perform direct measurements of the flux of glucose (and other metabolites) in brain tissue. Metabolic studies using brain slice preparations are attractive due to the controllability of recording conditions, absence of anesthetic interference and refined animal experimental protocols. In this work, taking advantage of the small size and versatility of carbon fiber microelectrodes (CFMs), we aimed to develop an amperometric glucose microbiosensor suitable for glucose measurement in brain slices. Potentiostatic- or galvanostatic-driven platinum electrodeposition was used to improve the analytical properties of CFMs towards detection of hydrogen peroxide. The platinized CFMs served as platform for the development of glucose microbiosensors through the immobilization of glucose-oxidase (GOx) by cross-linking with glutaraldehyde in the presence of BSA. Selective glucose measurements were attained by modifying the electrode with a permselective layer of meta-phenylenediamine and by integrating a null sensor. The in vitro characterization studies support the good analytical features of the CFM/Pt-based microbiosensors to reliably measure glucose in brain tissue. The ex vivo experiments in rodent hippocampal slices validated their suitability to measure evoked changes in extracellular glucose. This approach, encompassing the use of null sensor to cross-check the selectivity on a moment-to-moment basis, allowed us to provide the temporal and quantitative profile of extracellular glucose changes in hippocampal slices following a spreading depolarization event. Overall, these results support the potential of these microbiosensors to be used as a valuable tool to investigate the complex nature of glucose utilization in brain tissue linked to neuronal activation both in physiological and pathological conditions.


Assuntos
Técnicas Biossensoriais/métodos , Fibra de Carbono/química , Glucose/análise , Platina/química , Animais , Aspergillus niger/enzimologia , Encéfalo/metabolismo , Química Encefálica , Galvanoplastia , Enzimas Imobilizadas/química , Glucose/metabolismo , Glucose Oxidase/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microeletrodos , Ratos Wistar
18.
Braz J Infect Dis ; 23(4): 211-217, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31344351

RESUMO

BACKGROUND: Several tools have been developed to evaluate HIV health-related quality of life (HRQoL) during and after antiretroviral therapy (ART). Few longitudinal studies evaluated the effect of ART on the quality of life of HIV patients. OBJECTIVE: To evaluate changes in HRQoL in HIV-infected individuals one year after initiating ART. METHODS: A prospective study was conducted from May 2016 to July 2018. Data on clinical and sociodemographic characteristics of 91 HIV-infected patients were collected prior to initiation of ART and one year thereafter. Demographic and clinical data were collected and the questionnaires 36-item Short Form Health Survey (SF-36) and HIV/AIDS-targeted quality of life (HAT-QoL) were administered in both periods. Asymptomatic individuals, aged ≥18 years, were included in the study. Patients who discontinued treatment were excluded. The association between predictors of physical and mental HRQoL was analyzed by multiple linear regression analysis. RESULTS: Patients were predominantly male (78.0%), mean age 35.3 ±â€¯10.7 years, with no stable relationship (80.2%), and no comorbidities (73.6%). Most of the SF-36 domains improved after one year, particularly Physical Function (p = 0.0001), General Health (p = 0.0001), Social Functioning (p = 0.0001), Mental Health (p = 0.001), and Mental Component Summary (p = 0.004). HAT-QoL domains improved in the Overall Function (p = 0.0001), Life Satisfaction (p = 0.0001), Provider Trust (p = 0.001), and Sexual Function (p = 0.0001) domains. Sex (p = 0.032), age (p = 0.001), income (p = 0.007), and stable relationship (p = 0.004) were good predictors of the Physical Component Summary. Sex (p = 0.002) and stable relationship (p = 0.038) were good predictors of the Mental Component Summary. SF-36 and HAT-QoL scales presented strong correlations, except for Medication Concerns (0.15-0.37), HIV Mastery (0.18-0.38), Disclosure Worries (-0.15 to 0.07), and Provider Trust (-0.07 to 0.15). CONCLUSIONS: ART improved HRQoL after one year of use. The HAT-QoL and SF-36 correlated well and are good tools to evaluate HRQoL in HIV-infected patients on ART.


Assuntos
Terapia Antirretroviral de Alta Atividade/métodos , Infecções por HIV/tratamento farmacológico , Qualidade de Vida , Adulto , Brasil , Feminino , Infecções por HIV/fisiopatologia , Infecções por HIV/psicologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores Socioeconômicos , Inquéritos e Questionários , Resultado do Tratamento , Carga Viral
19.
Am J Med Genet A ; 146A(1): 1-7, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18074358

RESUMO

Mycophenolate mofetil (MMF) is a widely prescribed immunosuppressive agent after solid organ transplantation. Potential teratogenic effects after in utero exposure to MMF in experimental studies and clinical observations in humans has been postulated in recent literature. However, a specific pattern of malformation has not been identified yet. We present a newborn patient, born to a recipient of renal transplantation, who became pregnant while taking MMF as immunosuppressive therapy. The newborn exhibited cleft lip and palate, bilateral microtia and atretic external auditory canals, chorioretinal coloboma, hypertelorism, and micrognathia. An extensive review of the literature documented six other cases with similar malformations after in utero exposure to MMF. A consistent pattern of malformations comprising cleft lip and palate, microtia and external auditory canals could be observed in five of the six cases. A different malformative pattern observed in one of the patients could be attributed to a different agent rather than MMF. The possible teratogenic effects of other immunosuppressive drugs, such as tacrolimus and prednisone, to which this patient was also exposed, are discussed herein. In addition, the differential diagnosis with other dysmorphic syndromes that can present with a similar phenotype, such as CHARGE syndrome, 18q deletion and hypertelorism-microtia-clefting (HMC) syndrome, is presented. We conclude that in utero exposure to MMF can cause a characteristic phenotype and propose the existence of a mycophenolate-associated embryopathy whose main features are: cleft lip and palate, microtia with atresia of external auditory canal, micrognathia and hypertelorism. Ocular anomalies, corpus callosum agenesis, heart defects, kidney malformations, and diaphragmatic hernia may be part of the phenotypic spectrum of MMF embryopathy. The human teratogenicity of MMF is reinforced by this report, and the current contraceptive recommendations about its use in fertile women are stressed.


Assuntos
Imunossupressores/toxicidade , Exposição Materna , Ácido Micofenólico/análogos & derivados , Fenótipo , Efeitos Tardios da Exposição Pré-Natal , Anormalidades Induzidas por Medicamentos/diagnóstico por imagem , Anormalidades Induzidas por Medicamentos/etiologia , Anormalidades Induzidas por Medicamentos/cirurgia , Adulto , Feminino , Humanos , Imunossupressores/administração & dosagem , Transplante de Rim/imunologia , Troca Materno-Fetal , Ácido Micofenólico/administração & dosagem , Ácido Micofenólico/toxicidade , Prednisona/administração & dosagem , Gravidez , Resultado da Gravidez , Tacrolimo/administração & dosagem , Ultrassonografia
20.
Methods Mol Biol ; 1782: 89-107, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850995

RESUMO

Nitric oxide (•NO) is an ubiquitous signaling molecule that participates in molecular processes associated with several neural phenomena ranging from memory formation to excitotoxicity. In the hippocampus, neuronal •NO production is coupled to the activation of NMDA type glutamate receptors. Cytochrome c oxidase has emerged as a novel target for •NO, which competes with O2 for binding to this mitochondrial complex. This reaction establishes •NO as a regulator of cellular metabolism and, possibly, mitochondrial production of reactive oxygen species which participate in cellular signaling. A major gap in the understanding of •NO bioactivity, namely, in the hippocampus, has been the lack of knowledge of its concentration dynamics. Here, we present a detailed description of the simultaneous recording of •NO and O2 concentration dynamics in rat hippocampal slices. Carbon fiber microelectrodes are fabricated and applied for real-time measurements of both gases in a system close to in vivo models. This approach allows for a better understanding of the current paradigm by which an intricate interplay between •NO and O2 regulates cellular respiration.


Assuntos
Hipocampo/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Animais , Calibragem , Fibra de Carbono , Respiração Celular , Microeletrodos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA