Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(2): e2211416120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595665

RESUMO

Soft systems that respond to external stimuli, such as heat, magnetic field, and light, find applications in a range of fields including soft robotics, energy harvesting, and biomedicine. However, most of the existing systems exhibit nondirectional, nastic movement as they can neither grow nor sense the direction of stimuli. In this regard, artificial systems are outperformed by organisms capable of directional growth in response to the sense of stimuli or tropic growth. Inspired by tropic growth schemes of plant cells and fungal hyphae, here we report an artificial multistimuli-responsive tropic tip-growing system based on nonsolvent-induced phase separation of polymer solution, where polymer precipitates as its solvent dissolves into surrounding nonsolvent. We provide a theoretical framework to predict the size and velocity of growing precipitates and demonstrate its capability of sensing the directions of gravity, mechanical contact, and light and adjusting its growing direction in response. Exploiting the embedded physical intelligence of sensing and responding to external stimuli, our soft material system achieves multiple tasks including printing 3D structures in a confined space, bypassing mechanical obstacles, and shielded transport of liquids within water.


Assuntos
Células Vegetais , Polímeros , Gravitação
2.
Proc Natl Acad Sci U S A ; 116(28): 13807-13815, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31221759

RESUMO

As biological signals are mainly based on ion transport, the differences in signal carriers have become a major issue for the intimate communication between electrical devices and biological areas. In this respect, an ionic device which can directly interpret ionic signals from biological systems needs to be designed. Particularly, it is also required to amplify the ionic signals for effective signal processing, since the amount of ions acquired from biological systems is very small. Here, we report the signal amplification in ionic systems as well as sensing through the modified design of polyelectrolyte hydrogel-based ionic diodes. By designing an open-junction structure, ionic signals from the external environment can be directly transmitted to an ionic diode. Moreover, the minute ionic signals injected into the devices can also be amplified to a large amount of ions. The signal transduction mechanism of the ion-to-ion amplification is suggested and clearly verified by revealing the generation of breakdown ionic currents during an ion injection. Subsequently, various methods for enhancing the amplification are suggested.

3.
ACS Omega ; 6(51): 35297-35306, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34984261

RESUMO

The importance of chitosan has been strongly emphasized in literature because this natural polymer could not only remove heavy metal ions in water but also have the potential for recyclability. However, reversible phase transition and its dynamics, which are highlighting areas of a recycle process, have not been studied sufficiently. Here, we present dynamic studies of the dissolution as well as the gelation of a physically crosslinked chitosan hydrogel. Specifically, a one-dimensional gel growth system and an acetate buffer solution were prepared for the precise analysis of the dominant factors affecting a phase transition. The dissolution rate was found to be regulated by three major factors of the pH level, Cu2+, and NO2 -, while the gelation rate was strongly governed by the concentration of OH-. Apart from the gelation rate, the use of Cu2+ led to the rapid realization of gel characteristics. The results here provide strategies for process engineering, ultimately to determine the phase-transition rates. In addition, a microfluidic switch was successfully operated based on a better understanding of the reversible crosslinking of the chitosan hydrogel. Rapid gelation was required to close the channel, and a quick switchover was achieved by a dissolution enhancement strategy. As a result, factors that regulated the rates of gelation or dissolution were found to be useful to operate the fluidic switch.

4.
ACS Appl Mater Interfaces ; 13(5): 6606-6614, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33496567

RESUMO

In response to the extensive utilization of ionic circuits, including in iontronics and wearable devices, a new method for fabricating a hydrogel-based ionic circuit on a polydimethylsiloxane (PDMS) microchip is reported. Prolonged UV/ozone oxidation combined with proper surface functionalizations and a novel microchip bonding method using thiol-epoxy click reaction enable the robust attachment of the photopolymerized hydrogel to the microchannel surface for eventual operation in electrolytes as an ionic circuit. The stretchable ionic diode constructed on the PDMS microchip shows a superior rectification ratio even under tensile stress and long-term storage stability. Furthermore, the combination of the ionic circuit and unique material properties of PDMS allows us to maximize the versatility and diversify the functionalities of the iontronic device, as demonstrated in a pressure-driven ionic switch and chip-integrated ionic regulator. Its iontronic signal transmission mimicking the excitatory and inhibitory synapses also evinces the potential of the hydrogel-based iontronics on the PDMS microchip as developed toward an aqueous neuromimetic information processor while opening up new opportunities for various bioinspired applications.

5.
ACS Appl Mater Interfaces ; 13(7): 9074-9080, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33491445

RESUMO

Graphene is an optimal material to be employed as an ionic diffusion barrier because of its outstanding impermeability and chemical robustness. Indium tin oxide (ITO) is often used in perovskite light-emitting diodes (PeLEDs), and it can release indium easily upon exposure to the acidic hole-injection layer so that luminescence can be quenched significantly. Here, we exploit the outstanding impermeability of graphene and use it as a chemical barrier to block the etching that can occur in ITO exposed to an acidic hole-injection layer in PeLEDs. This barrier reduced the luminescence quenching that these metallic species can cause, so the photoluminescence lifetime of perovskite film was substantially higher in devices with ITO and graphene layer (87.9 ns) than in devices that had only an ITO anode (22.1 ns). Luminous current efficiency was also higher in PeLEDs with a graphene barrier (16.4 cd/A) than in those without graphene (9.02 cd/A). Our work demonstrates that graphene can be used as a barrier to reduce the degradation of transparent electrodes by chemical etching in optoelectronic devices.

6.
Adv Mater ; 30(42): e1704403, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29889329

RESUMO

As many devices for human utility aim for fast and convenient communication with users, superb electronic devices are demonstrated to serve as hardware for human-machine interfaces in wearable forms. Wearable devices for daily healthcare and self-diagnosis offer more human-like properties unconstrained by deformation. In this sense, stretchable ionics based on flexible and stretchable hydrogels are on the rise as another means to develop wearable devices for bioapplications for two main reasons: i) ionic currents and choosing the same signal carriers for biological areas, and ii) the adoption of hydrogel ionic conductors, which are intrinsically stretchable materials with biocompatibility. Here, the current status of stretchable ionics and future applications are introduced, whose positive effects can be magnified by stretchable ionics.


Assuntos
Íons/química , Dispositivos Eletrônicos Vestíveis , Humanos , Hidrogéis/química
7.
Sci Rep ; 5: 13791, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26337668

RESUMO

Many flexible electronic devices contain metal films on polymer substrates to satisfy requirements for both electrical conductivity and mechanical durability. Despite numerous trials to date, the stretchability of metal interconnects remains an issue. In this paper, we have demonstrated a stretchable metal interconnect through control of the texture of a copper film with columnar grown grains on a polyimide (PI) substrate. The columnar grown copper films (CGC films) were deposited by regulating radio frequency (RF) sputtering powers. CGC films were able to sustain their electrical conductivity at strains above 100%. Instead of ultimate electrical discontinuity by channel crack propagation, CGC films maintained their conductivity by forming ligament structures, or a 'conductive net,' through trapped micro-cracks. XRD, AFM and in situ SEM analysis were used to investigate these stretchable conductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA