Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nano Lett ; 23(15): 7070-7075, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37466639

RESUMO

The recently discovered interlayer Dzyaloshinskii-Moriya interaction (IL-DMI) in multilayers with perpendicular magnetic anisotropy favors canting of spins in the in-plane direction. It could thus stabilize intriguing spin textures such as Hopfions. A key requirement for nucleation is to control the IL-DMI. Therefore, we investigate the influence of an electric current on a synthetic antiferromagnet with growth-induced IL-DMI. The IL-DMI is quantified by using out-of-plane hysteresis loops of the anomalous Hall effect while applying a static in-plane magnetic field at varied azimuthal angles. We observe a shift in the azimuthal dependence with an increasing current, which we conclude to originate from the additional in-plane symmetry breaking introduced by the current flow. Fitting the angular dependence, we demonstrate the presence of an additive current-induced term that linearly increases the IL-DMI in the direction of current flow. This opens the possibility of easily manipulating 3D spin textures by currents.

2.
Nat Mater ; 18(7): 703-708, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31160801

RESUMO

The exchange interaction governs static and dynamic magnetism. This fundamental interaction comes in two flavours-symmetric and antisymmetric. The symmetric interaction leads to ferro- and antiferromagnetism, and the antisymmetric interaction has attracted significant interest owing to its major role in promoting topologically non-trivial spin textures that promise fast, energy-efficient devices. So far, the antisymmetric exchange interaction has been found to be rather short ranged and limited to a single magnetic layer. Here we report a long-range antisymmetric interlayer exchange interaction in perpendicularly magnetized synthetic antiferromagnets with parallel and antiparallel magnetization alignments. Asymmetric hysteresis loops under an in-plane field reveal a unidirectional and chiral nature of this interaction, which results in canted magnetic structures. We explain our results by considering spin-orbit coupling combined with reduced symmetry in multilayers. Our discovery of a long-range chiral interaction provides an additional handle to engineer magnetic structures and could enable three-dimensional topological structures.

3.
Nat Mater ; 18(8): 905, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31239552

RESUMO

In the version of this Article originally published, the sentence 'D.-S.H. wrote the paper with K.L., J.H. and M.K.' in the author contributions was incorrect; it should have read 'D.-S.H. wrote the paper with K.L., J.H., M.-H.J. and M.K.' This has been corrected in the online versions of the Article.

4.
Phys Rev Lett ; 124(21): 217701, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530662

RESUMO

Controlling magnetism by electric fields offers a highly attractive perspective for designing future generations of energy-efficient information technologies. Here, we demonstrate that the magnitude of current-induced spin-orbit torques in thin perpendicularly magnetized CoFeB films can be tuned and even increased by electric-field generated piezoelectric strain. Using theoretical calculations, we uncover that the subtle interplay of spin-orbit coupling, crystal symmetry, and orbital polarization is at the core of the observed strain dependence of spin-orbit torques. Our results open a path to integrating two energy efficient spin manipulation approaches, the electric-field-induced strain and the current-induced magnetization switching, thereby enabling novel device concepts.

5.
Adv Mater ; 34(40): e2203580, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35953451

RESUMO

All-solid-state batteries (ASSBs) that employ anode-less electrodes have drawn attention from across the battery community because they offer competitive energy densities and a markedly improved cycle life. Nevertheless, the composite matrices of anode-less electrodes impose a substantial barrier for lithium-ion diffusion and inhibit operation at room temperature. To overcome this drawback, here, the conversion reaction of metal fluorides is exploited because metallic nanodomains formed during this reaction induce an alloying reaction with lithium ions for uniform and sustainable lithium (de)plating. Lithium fluoride (LiF), another product of the conversion reaction, prevents the agglomeration of the metallic nanodomains and also protects the electrode from fatal lithium dendrite growth. A systematic analysis identifies silver (I) fluoride (AgF) as the most suitable metal fluoride because the silver nanodomains can accommodate the solid-solution mechanism with a low nucleation overpotential. AgF-based full cells attain reliable cycling at 25 °C even with an exceptionally high areal capacity of 9.7 mAh cm-2 (areal loading of LiNi0.8 Co0.1 Mn0.1 O2  = 50 mg cm-2 ). These results offer useful insights into designing materials for anode-less electrodes for sulfide-based ASSBs.

6.
J Nanosci Nanotechnol ; 11(7): 6245-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121694

RESUMO

Unexpected magnetism is investigated by measurements of the magnetic and magneto-transport properties in the two phase-separated thin films of nano-sized TbN clusters embedded in Co matrices. The spin-dependent transport depends strongly on the volume fraction of magnetic TbN clusters, especially on the continuity of the magnetic phase. With decreasing the TbN volume fraction, the giant magnetoresistance (GMR) is reduced and the anisotropic magnetoresistance (AMR) is enhanced. Unlike the GMR observed in Co68(TbN)32, the AMR is found in Co72(TbN)28. The room-temperature magnetization exhibits a typical ferromagnetic signal mainly due to the Co matrix, while the low-temperature magnetization shows an additional linear magnetic component. This is attributed to the magnetic moment of TbN at temperatures below the ferromagnetic transition temperature T(C) = 44 K, and the magnetic moments of TbN are coupled with those of Co. The topological and magnetic images support the magnetic exchange at the boundary between the TbN clusters and the Co matrix.

7.
J Nanosci Nanotechnol ; 11(7): 6368-70, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121717

RESUMO

Tunneling spectra of intermediate-valence semiconductor SmB6 are reported for in-situ break junctions, being able to make nano-scale planar tunnel junctions. The electron tunneling using break junction method is a powerful probe of the intrinsic energy gap. The investigated tunneling conductance dI/dV curves are mostly reproducible and symmetric with respect to the applied voltage. Two kinds of characteristic energy gaps are observed at 2E(d) = 20 mV and 2E(a) = 9 mV, which coincides well with those previously studied by point-contact spectroscopy and the activation energy fitted by our electrical resistivity data. The positions of the gap structures are independent of the zero-bias conductance, implying no additional voltage drop induced by the break junctions. The small anomaly at the activation energy 2E(a) indicates a relatively low density of in-gap states. Furthermore, the results of magnetic properties reveal the ratio of Sm2+:Sm3+ = 3.7:6.3 and the antiferromagnetic nature at high temperature.

8.
J Nanosci Nanotechnol ; 11(7): 6126-30, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121671

RESUMO

We have fabricated hexagonal close-packed (hcp) Ni nanoparticles covered by a face-centered cubic (fcc) Ni surface layer by polyol method. The magnetic properties have been investigated as a function of temperature and applied magnetic field. The magnetic behavior reveals that the system should be divided magnetically into three distinct phases with different origins. The fcc Ni phase on the shell contributes to the superparamagnetism through a wide temperature range up to 360 K. The hcp Ni phase at the core is associated with antiferromagnetic nature below 12 K. These observations are in good agreement with the X-ray absorption spectroscopy and magnetic circular dichroism measurements. In our particular case, the unique hcp core and fcc shell structure gives rise to an additional anomaly at 20 K in the zero-field-cooled magnetization curve. Its position is barely affected by the magnetic field but its structure disappears above 30 kOe, showing a metamagnetic transition in the magnetization versus magnetic field curve. This new phase originates from the magnetic exchange at the interface between the hcp and fcc Ni sublattices.

9.
ACS Appl Mater Interfaces ; 12(5): 6328-6335, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31944102

RESUMO

To obtain high catalytic properties, finely modulating the electronic structure and active sites of catalysts is important. Herein, we report the design and economical synthesis of Pd@Pt core-shell nanoparticles for high productivity in the direct synthesis of hydrogen peroxide. Pd@Pt core-shell nanoparticles with a partially covered Pt shell on a Pd cube were synthesized using a simple direct seed-mediated growth method. The synthesized Pd@Pt core-shell nanoparticles were composed of high index faceted Pt on the corners and edges, while the Pd-Pt alloy was located on the terrace area of the Pd cubes. Because of the high-indexed Pt and Pd-Pt alloy sites, the synthesized concave Pd@Pt7 nanoparticles exhibited both high H2 conversion and H2O2 selectivity compared with Pd cubes.

10.
ACS Omega ; 4(15): 16578-16584, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31616838

RESUMO

The key of spintronic devices using the spin-transfer torque phenomenon is the effective reduction of switching current density by lowering the damping constant and the saturation magnetization while retaining strong perpendicular magnetic anisotropy. To reduce the saturation magnetization, particular conditions such as specific substitutions or buffer layers are required. Herein, we demonstrate highly reduced saturation magnetization in tetragonal D022 Mn3-x Ga thin films prepared by rf magnetron sputtering, where the epitaxial growth is examined on various substrates without any buffer layer. As the lattice mismatch between the sample and the substrate decreases from LaAlO3 and (LaAlO3)0.3(Sr2AlTaO6)0.7 to SrTiO3, the quality of Mn3-x Ga films is improved together with the magnetic and electronic properties. Especially, the Mn3-x Ga thin film epitaxially grown on the SrTiO3 substrate, fully oriented along the c axis perpendicular to the film plane, exhibits significantly reduced saturation magnetization as low as 0.06 µB, compared to previous results. By the structural and chemical analyses, we find that the predominant removal of Mn II atoms and the large population of Mn3+ ions affect the reduced saturation magnetization. Our findings provide insights into the magnetic properties of Mn3-x Ga crystals, which promise great potential for spin-related device applications.

11.
Sci Rep ; 5: 10309, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25974047

RESUMO

There are many interests to achieve long-range magnetic order in topological insulators of Bi2Se3 or Bi2Te3 by doping magnetic transition metals such as Fe and Mn. The transition metals act as not only magnetic dopants but also electric dopants because they are usually divalent. However, if the doping elements are rare-earth metals such as Gd, which are trivalent, only magnetic moments can be introduced. We fabricated single crystals of Bi2-xGdxTe3 (0 ≤ × ≤ 0.2), in which we observed magnetic phase change from paramagnetic (PM) to antiferromagnetic (AFM) phase by increasing x. This PM-to-AFM phase transition agrees with the density functional theory calculations showing a weak and short-ranged Gd-Gd AFM coupling via the intervening Te ions. The critical point corresponding to the magnetic phase transition is x = 0.09, where large linear magnetoresistance and highly anisotropic Shubnikov-de Haas oscillations are observed. These results are discussed with two-dimensional properties of topological surface state electrons.

12.
Nat Commun ; 6: 8035, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26268611

RESUMO

Complex oxide systems have attracted considerable attention because of their fascinating properties, including the magnetic ordering at the conducting interface between two band insulators, such as LaAlO3 and SrTiO3. However, the manipulation of the spin degree of freedom at the LaAlO3/SrTiO3 heterointerface has remained elusive. Here, we have fabricated hybrid magnetic tunnel junctions consisting of Co and LaAlO3/SrTiO3 ferromagnets with the insertion of a Ti layer in between, which clearly exhibit magnetic switching and the tunnelling magnetoresistance effect below 10 K. The magnitude and sign of the tunnelling magnetoresistance are strongly dependent on the direction of the rotational magnetic field parallel to the LaAlO3/SrTiO3 plane, which is attributed to a strong Rashba-type spin-orbit coupling in the LaAlO3/SrTiO3 heterostructure. Our study provides a further support for the existence of the macroscopic ferromagnetism at LaAlO3/SrTiO3 heterointerfaces and opens a novel route to realize interfacial spintronics devices.

13.
Sci Rep ; 4: 6548, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25293693

RESUMO

Spin-orbit torques, including the Rashba and spin Hall effects, have been widely observed and investigated in various systems. Since interesting spin-orbit torque (SOT) arises at the interface between heavy nonmagnetic metals and ferromagnetic metals, most studies have focused on the ultra-thin ferromagnetic layer with interface perpendicular magnetic anisotropy. Here, we measured the effective longitudinal and transverse fields of bulk perpendicular magnetic anisotropy Pd/FePd (1.54 to 2.43 nm)/MgO systems using harmonic methods with careful correction procedures. We found that in our range of thicknesses, the effective longitudinal and transverse fields are five to ten times larger than those reported in interface perpendicular magnetic anisotropy systems. The observed magnitude and thickness dependence of the effective fields suggest that the SOT do not have a purely interfacial origin in our samples.

14.
Chem Asian J ; 8(1): 290-5, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23161874

RESUMO

We have synthesized ultra-small and uniform Fe(x)Co(1-x)/graphitic carbon shell (Fe(x)Co(1-x)/GC) nanocrystals (x=0.13, 0.36, 0.42, 0.50, 0.56, and 0.62, respectively) with average diameters of <4 nm by thermal decomposition of metal precursors in approximately 60 nm MCM-41 and methane CVD. The composition of the Fe(x)Co(1-x)/GC nanocrystals can be tuned by changing the Fe:Co ratios of the metal precursors. The Fe(x)Co(1-x)/GC nanocrystals show superparamagnetic properties at room temperature. The Fe(0.50)Co(0.50)/GC, Fe(0.56)Co(0.44)/GC, and Fe(0.62)Co(0.38)/GC nanocrystals have a single bcc FeCo structure, whereas the Fe(0.13)Co(0.87)/GC, Fe(0.36)Co(0.64)/GC, and Fe(0.42)Co(0.58)/GC nanocrystals have a mixed structure of bcc FeCo and fcc Co. The single bcc-phased Fe(x)Co(1-x)/GC nanocrystals functionalized with phospholipid-poly(ethylene glycol) (PL-PEG) in phosphate buffered saline (PBS) are demonstrated to be excellent T(1) MRI contrast agents.


Assuntos
Cobalto/química , Meios de Contraste , Grafite/química , Ferro/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA