Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Molecules ; 24(7)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30978947

RESUMO

Mulberry fruit (Morus alba L.) contains abundant bioactive compounds, including anthocyanins and flavonols, and has been reported to possess potent beneficial properties including anticancer, antidiabetic, and anti-oxidant effects. High hydrostatic pressure (HHP) processing, a nonthermal food processing technology, is suitable for the extraction of bioactive compounds from plants. Nevertheless, the anti-inflammatory effects of HHP extract of mulberry fruit (HM) in RAW264.7 cells remain unclear. The present study aimed to investigate the anti-inflammatory effects of HM on lipopolysaccharide (LPS)-induced inflammation in vitro. RAW264.7 cells were treated with various concentrations (0.1-1 µg/mL) of HM in the presence or absence of LPS. HM inhibited the inflammatory mediator, nitric oxide (NO) release, and mRNA expression of nitric oxide synthase 2 (NOS2) in LPS-induced RAW264.7 cells. In addition, HM suppressed both mRNA and protein expressions of prostaglandin-endoperoxide synthase 2 (PTGS2). Moreover, it reduced the LPS-induced secretion of proinflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α. These results revealed that HM exerts anti-inflammatory effects by inhibiting several mediators and cytokines involved in the inflammatory process.


Assuntos
Frutas/química , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Morus/química , Animais , Ciclo-Oxigenase 2/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pressão Hidrostática , Inflamação/patologia , Interleucina-6/genética , Lipopolissacarídeos/química , Camundongos , Óxido Nítrico/genética , Óxido Nítrico Sintase Tipo II/genética , Células RAW 264.7 , RNA Mensageiro/genética , Fator de Necrose Tumoral alfa/genética
2.
Molecules ; 23(8)2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30044453

RESUMO

Isorhamnetin (ISOR), 3-O-methylquercetin, is a naturally occurring flavonoid in many plants. It is a metabolite derived from quercetin and is known to exert beneficial effects on the prevention of obesity. However, the molecular mechanism of action involved in ISOR-mediated mitochondrial biogenesis, and AMP-activated protein kinase (AMPK) activation in 3T3-L1 cells remains unclear. The aim of this study was to determine whether ISOR affected mitochondrial biogenesis and AMPK activation, during 3T3-L1 adipocyte differentiation. Intracellular lipid and triglyceride accumulation, and glycerol-3-phosphate dehydrogenase (GPDH) activity decreased in ISOR-treated cells. The mRNA levels of adipogenic genes, such as the proliferator-activated receptor-γ (PPAR-γ), and adipocyte protein 2 (aP2), were inhibited by ISOR. In contrast, mRNA levels of mitochondrial genes, such as peroxisome proliferator-activated reporter gamma coactivator-1α (PGC-1α), nuclear respiratory factor (NRF)-1, transcription factor A (Tfam), and carnitine palmitoyl transferase-1α (CPT-1α), were all stimulated by ISOR treatment. Mitochondria DNA (mtDNA) copy number and AMPK activity were also stimulated by ISOR. The results suggested that the mitochondrial biogenic effect of ISOR in adipocytes might have been associated with stimulation of mitochondrial gene expression, mtDNA replication, and AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Quercetina/análogos & derivados , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/genética , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia , Animais , Diferenciação Celular , Sobrevivência Celular , DNA Mitocondrial/genética , Ativação Enzimática , Humanos , Camundongos , Mitocôndrias/metabolismo , Biogênese de Organelas , Fosforilação , Quercetina/química , Quercetina/metabolismo , RNA Mensageiro/genética , Transdução de Sinais
3.
Molecules ; 22(7)2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28704952

RESUMO

Tartary buckwheat (Fagopyrum tataricum) has been established globally as a nutritionally important food item, particularly owing to high levels of bioactive compounds such as rutin. This study investigated the effect of tartary buckwheat extracts (TBEs) on adipogenesis and inflammatory response in 3T3-L1 cells. TBEs inhibited lipid accumulation, triglyceride content, and glycerol-3-phosphate dehydrogenase (GPDH) activity during adipocyte differentiation of 3T3 L1 cells. The mRNA levels of genes involved in fatty acid synthesis, such as peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer binding protein-α (CEBP-α), adipocyte protein 2 (aP2), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and stearoylcoenzyme A desaturase-1 (SCD-1), were suppressed by TBEs. They also reduced the mRNA levels of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein 1 (MCP-1), and inducible nitric oxide synthase (iNOS). In addition, TBEs were decreased nitric oxide (NO) production. These results suggest that TBEs may inhibit adipogenesis and inflammatory response; therefore, they seem to be beneficial as a food ingredient to prevent obesity-associated inflammation.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Fagopyrum/química , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Rutina , Células 3T3-L1 , Acetil-CoA Carboxilase/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Ácido Graxo Sintases/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Óxido Nítrico/biossíntese , Obesidade/complicações , Obesidade/metabolismo , PPAR gama/metabolismo , Rutina/administração & dosagem , Rutina/química , Rutina/farmacologia , Rutina/uso terapêutico , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Biosci Biotechnol Biochem ; 79(5): 816-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774635

RESUMO

In this study, we investigated the effects of Korean red ginseng water extract (KRGE) on hepatic lipid accumulation in HepG2 cells. KRGE decreased hepatic triglyceride and cholesterol levels. Further, KRGE suppressed expression of fatty acid synthase (FAS) and 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase. These results suggest that KRGE may reduce hepatic lipid accumulation by inhibition of FAS and HMG-CoA reductase expression in HepG2 cells.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Panax/química , Extratos Vegetais/farmacologia , Colesterol/metabolismo , Ácido Graxo Sintases/antagonistas & inibidores , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Células Hep G2/efeitos dos fármacos , Células Hep G2/metabolismo , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Triglicerídeos/metabolismo
5.
J Sci Food Agric ; 95(12): 2409-15, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25323802

RESUMO

BACKGROUND: Red ginseng is produced by steaming and drying fresh ginseng. Through this processing, chemical compounds are modified, and then biological activities are changed. In the food-processing industry, high hydrostatic pressure (HHP) has become an alternative to heat processing to make maximum use of bioactive compounds in food materials. This study comparatively investigated the anti-adipogenic effects of water extract of red ginseng (WRG) and high hydrostatic pressure extract of fresh ginseng (HPG) in 3T3-L1 adipocytes. RESULTS: Both WRG and HPG inhibited the accumulation of intracellular lipids and triglycerides, and the activity of glycerol-3-phosphate dehydrogenase (GPDH), a key enzyme in triglyceride biosynthesis. Intracellular lipid content and GPDH activity were significantly lower in the HPG group compared to the WRG group. In addition, mRNA expression of adipogenic genes, including CEBP-α, SREBP-1c and aP2, were lower in HPG-treated cells compared to WRG-treated cells. HPG significantly increased the activity of AMPK, and WRG did not. CONCLUSION: Results suggested that HPG may have superior beneficial effects on the inhibition of adipogenesis compared with WRG. The anti-adipogenic effects of HPG were partially associated with the inhibition of GPDH activity, suppression of adipogenic gene expression and activation of AMPK in 3T3-L1 adipocytes.


Assuntos
Adipogenia/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Panax , Fitoterapia , Extratos Vegetais/farmacologia , Células 3T3-L1/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Animais , Fármacos Antiobesidade/uso terapêutico , Humanos , Pressão Hidrostática , Camundongos , Obesidade/tratamento farmacológico
6.
Prev Nutr Food Sci ; 28(3): 271-277, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37842255

RESUMO

Quercetin is a flavonoid widely present in plants; despite its beneficial physiological activity, it exhibits considerably low bioavailability. Nanoemulsion technology is used for improving the bioavailability of lipophilic phenolic compounds. This study aimed to investigate the potential effects of quercetin nanoemulsion (QN) on regulating the microRNA (miR)-33/34a pathway involved in cholesterol efflux in the liver of mice fed with a high-cholesterol (HC) diet. Subsequently, C57BL/6J mice were divided into four groups and fed a normal chow diet, HC diet supplemented with 1% cholesterol and 0.5% cholic acid, or HC diet supplemented with 0.05% QN or 0.1% QN for 6 weeks. Serum and hepatic lipid profiles were assayed using commercial enzymatic kits. Gene expression and miR levels were quantified using real-time quantitative reverse transcription polymerase chain reaction, and adenosine monophosphate-activated protein kinase (AMPK) activity was measured using an AMPK Kinase Assay kit. QN supplementation improved serum and liver lipid profiles. QN upregulated the mRNA levels of adenosine triphosphate (ATP)-binding cassette subfamily A1, ATP-binding cassette subfamily G1, and scavenger receptor class B type 1, which are related to cholesterol efflux. In the QN group, the hepatic AMPK activity increased, whereas miR-33, and miR-34a expression levels decreased. These results suggest that QN may enhance cholesterol efflux, at least partly through modulating AMPK activity and miR-33/34a expression in the liver.

7.
Antioxidants (Basel) ; 12(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37237919

RESUMO

This study was performed to evaluate the anti-obesity effects of green tea and java pepper mixture (GJ) on energy expenditure and understand the regulatory mechanisms of AMP-activated protein kinase (AMPK), microRNA (miR)-34a, and miR-370 pathways in the liver. Sprague-Dawley rats were divided into four groups depending on the following diets given for 14 weeks: normal chow diet (NR), 45% high-fat diet (HF), HF + 0.1% GJ (GJL), and HF + 0.2% GJ (GJH). The results revealed that GJ supplementation reduced body weight and hepatic fat accumulation, improved serum lipids, and increased energy expenditure. In the GJ-supplemented groups, the mRNA levels of genes related to fatty acid syntheses, such as a cluster of differentiation 36 (CD36), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and stearoyl-CoA desaturase 1 (SCD1) were downregulated, and mRNA levels of peroxisome proliferator-activated receptor alpha (PPARα), carnitine/palmitoyl-transferase 1 (CPT1), and uncoupling protein 2 (UCP2), which participate in fatty acid oxidation, were upregulated in the liver. GJ increased the AMPK activity and decreased the miR-34a and miR-370 expression. Therefore, GJ prevented obesity by increasing energy expenditure and regulating hepatic fatty acid synthesis and oxidation, suggesting that GJ is partially regulated through AMPK, miR-34a, and miR-370 pathways in the liver.

8.
Int J Mol Sci ; 13(5): 5729-5739, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22754327

RESUMO

Cardiovascular disease (CVD) is one of the main causes of mortality worldwide, and dyslipidemia is a major risk factor for CVD. Ginseng has been widely used in the clinic to treat CVD. Ginsenoside Rg3, one of the major active components of ginseng, has been reported to exhibit antiobesity, antidiabetic, and cardioprotective effects. However, the effect of ginsenoside Rg3 on hepatic lipid metabolism remains unclear. Therefore, we investigated whether ginsenoside Rg3 would regulate hepatic lipid metabolism with AMP-activated protein kinase (AMPK) activation in HepG2 cells. Ginsenoside Rg3 significantly reduced hepatic cholesterol and triglyceride levels. Furthermore, ginsenoside Rg3 inhibited expression of sterol regulatory element binding protein-2 (SREBP-2) and 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR). Ginsenoside Rg3 increased activity of AMPK, a major regulator of energy metabolism. These results suggest that ginsenoside Rg3 reduces hepatic lipid accumulation with inhibition of SREBP-2 and HMGCR expression and stimulation of AMPK activity in HepG2 cells. Therefore, ginsenoside Rg3 may be beneficial as a food ingredient to lower the risk of CVD by regulating dyslipidemia.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ginsenosídeos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ginsenosídeos/química , Células Hep G2 , Humanos , Panax/química
9.
Nutrients ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807865

RESUMO

The aim of the present study was to examine the effect of green tea extract containing Piper retrofractum fruit (GTP) on dextran-sulfate-sodium (DSS)-induced colitis, the regulatory mechanisms of microRNA (miR)-21, and the nuclear factor-κB (NF-κB) pathway. Different doses of GTP (50, 100, and 200 mg/kg) were administered orally once daily for 14 days, followed by GTP with 3% DSS for 7 days. Compared with the DSS-treated control, GTP administration alleviated clinical symptoms, including the disease activity index (DAI), colon shortening, and the degree of histological damage. Moreover, GTP suppressed miR-21 expression and NF-κB activity in colon tissue of DSS-induced colitis mice. The mRNA levels of inflammatory mediators, such as tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), interleukin-1ß (IL-1ß), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were downregulated by GTP. Colonic nitric oxide (NO) and prostaglandin E2 (PGE2) production, and myeloperoxidase (MPO) activity were also lowered by GTP. Taken together, our results revealed that GTP inhibits DSS-induced colonic inflammation by suppressing miR-21 expression and NF-κB activity, suggesting that it may be used as a potential functional material for improving colitis.


Assuntos
Colite , MicroRNAs , Piper , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Frutas/metabolismo , Guanosina Trifosfato/uso terapêutico , Camundongos , MicroRNAs/genética , NF-kappa B/metabolismo , Piper/metabolismo , Chá/efeitos adversos
10.
Nutrients ; 14(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36014836

RESUMO

This study examined the effect of extruded Portulaca oleracea L. extract (PE) in rats fed a high-cholesterol diet through the AMP-activated protein kinase (AMPK) and microRNA (miR)-33/34a pathway. Sprague-Dawley rats were randomized into three groups and fed either a standard diet (SD), a high-cholesterol diet containing 1% cholesterol and 0.5% cholic acid (HC), or an HC diet containing 0.8% PE for 4 weeks. PE supplementation improved serum, liver, and fecal lipid profiles. PE upregulated the expression of genes involved in cholesterol efflux and bile acids' synthesis such as liver X receptor alpha (LXRα), ATP-binding cassette subfamily G5/G8 (ABCG5/8), and cholesterol 7 alpha-hydroxylase (CYP7A1), and downregulated farnesoid X receptor (FXR) in the liver. In addition, hepatic gene expression levels of apolipoprotein A-l (apoA-1), paraoxonase 1 (PON1), ATP-binding cassette subfamily A1/G1 (ABCA1/G1), lecithin-cholesterol acyltransferase (LCAT), and scavenger receptor class B type 1 (SR-B1), which are related to serum high-density lipoprotein cholesterol metabolism, were upregulated by PE. Furthermore, hepatic AMPK activity in the PE group was higher than in the HC group, and miR-33/34a expression levels were suppressed. These results suggest that PE improves the cholesterol metabolism by modulating AMPK activation and miR-33/34a expression in the liver.


Assuntos
Hipercolesterolemia , MicroRNAs , Portulaca , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Colesterol , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Dieta , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley
11.
J Med Food ; 25(3): 251-260, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35320014

RESUMO

Low-grade inflammation might be a link between obesity and obesity-associated metabolic dysfunction, including diabetes, hepatic steatosis, and other health complications. This study investigated whether the supplementation of high hydrostatic pressure extract of mulberry (Morus alba L.) leaves (HML) to obese rats could counteract obesity-related inflammation. Three-week-old male Sprague-Dawley rats were separated into three groups as follows: (a) a normal diet, (b) 45% high-fat (HF) diet, and HF diet containing 0.4% HML (c) or 0.8% HML (d) (IACUC No. 17-033). After 14 weeks of HML supplementation, adipose tissue mass, mRNA expression of adipogenic genes, such as aP2, peroxisome proliferator-activated receptor γ (PPARγ), and sterol regulatory element binding protein 1c (SREBP1c), and macrophage recruitment were significantly decreased in HF-fed obese rats. Serum concentrations of nitric oxide and mRNA levels of arginase1 (Arg1), CD11c, and inducible nitric oxide synthase (iNOS) involved in adipose tissue macrophage M1 polarization were also significantly reduced by HML. Moreover, HML alleviated the serum and hepatic lipid profiles and reduced hepatic lipogenic gene expression of acetyl-CoA carboxylase (ACC), cluster of differentiation 36 (CD36), CPT1, fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD1), and SREBP1c, and inflammation-associated genes, including IL1ß, interleukin 6 (IL6), and tumor necrosis factor α (TNFα). Serum IL6 and TNFα levels were remarkedly suppressed in the 0.8% HML group. These results suggested that the favorable effect of HML on obesity-associated inflammation might be related in part to the decrease in adipose tissue and hepatic fat deposition and inflammation.


Assuntos
Morus , Animais , Pressão Hidrostática , Inflamação/tratamento farmacológico , Masculino , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/genética , Extratos Vegetais/farmacologia , Folhas de Planta , Ratos , Ratos Sprague-Dawley
12.
J Nutr ; 141(11): 1947-53, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21918057

RESUMO

This study investigated the antiobesity effect of garlic in diet-induced obese mice. Male C57BL/6J mice were fed a high-fat diet (45% fat) for 8 wk to induce obesity. Subsequently, they were fed a high-fat control diet, high-fat diets supplemented with 2%, or 5% garlic (wt:wt) for another 7 wk. Dietary garlic reduced body weight and the mass of various white adipose tissue deposits and also ameliorated the high-fat diet-induced abnormal plasma and liver lipid profiles. Garlic supplementation significantly decreased the mRNA levels of adipogenic genes in white adipose tissues (WAT). However, consumption of garlic increased the expression of mRNA for uncoupling proteins in brown adipose tissue (BAT), liver, WAT, and skeletal muscle. Mice treated with garlic maintained a significantly higher body temperature than untreated mice during a 6-h, 4°C cold challenge and, notably, AMP-activated protein kinase (AMPK) activity was stimulated in BAT, liver, WAT, and skeletal muscle. These results suggest that the antiobesity effects of garlic were at least partially mediated via activation of AMPK, increased thermogenesis, and decreased expression of multiple genes involved in adipogenesis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Peso Corporal , Dieta , Alho , Proteínas Mitocondriais/metabolismo , Obesidade/dietoterapia , RNA Mensageiro/genética , Tecido Adiposo/enzimologia , Tecido Adiposo/metabolismo , Animais , Ativação Enzimática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Obesidade/enzimologia , Obesidade/fisiopatologia , Reação em Cadeia da Polimerase em Tempo Real
13.
Phytother Res ; 25(6): 935-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21626599

RESUMO

Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is a pungent ingredient of red peppers, and has been reported to reduce body weight gain and adiposity in rodents. The present study investigated the effects of capsaicin on lipid catabolism in differentiated 3T3-L1 adipocytes. Capsaicin decreased the intracellular lipid content in a concentration-dependent manner. The release of glycerol into the medium was increased by the addition of capsaicin. The mRNA levels of genes involved in lipid catabolism such as hormone sensitive lipase (HSL), carnitine palmitoyl transferase-Iα (CPTI-α) and uncoupling protein 2 (UCP2) were up-regulated significantly. These results suggest that capsaicin exerts its lipolytic action by increasing the hydrolysis of triacylglycerol in adipocytes, and that these effects are mediated at least partially by regulation of the expression of multiple genes that are involved in the lipid catabolic pathway, such as HSL and CPT-Iα, and those involved in thermogenesis such as UCP2.


Assuntos
Adipócitos/efeitos dos fármacos , Capsaicina/farmacologia , Capsicum/química , Lipólise/efeitos dos fármacos , Extratos Vegetais/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Lipídeos/análise , Camundongos , RNA Mensageiro/genética , Esterol Esterase/metabolismo , Triglicerídeos/metabolismo
14.
Nutrients ; 13(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34684660

RESUMO

Decreased energy expenditure and chronically positive energy balance contribute to the prevalence of obesity and associated metabolic dysfunctions, such as dyslipidemia, hepatic fat accumulation, inflammation, and muscle mitochondrial defects. We investigated the effects of Chrysanthemum morifolium Ramat flower extract (CE) on obesity-induced inflammation and muscle mitochondria changes. Sprague-Dawley rats were randomly divided into four groups and fed either a normal diet, 45% high-fat diet (HF), HF containing 0.2% CE, or 0.4% CE for 13 weeks. CE alleviated HF-increased adipose tissue mass and size, dyslipidemia, hepatic fat deposition, and systematic inflammation, and increased energy expenditure. CE significantly decreased gene expression involved in adipogenesis, pro-inflammation, and the M1 macrophage phenotype, as well as glycerol-3-phosphate dehydrogenase (GPDH) and nuclear factor-kappa B (NF-kB) activities in epididymal adipose tissue. Moreover, CE supplementation improved hepatic fat accumulation and modulated gene expression related to fat synthesis and oxidation with an increase in adenosine monophosphate-activated protein kinase (AMPK) activity in the liver. Furthermore, CE increased muscle mitochondrial size, mitochondrial DNA (mtDNA) content, and gene expression related to mitochondrial biogenesis and function, including sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), and PGC-1α-target genes, along with AMPK-SIRT1 activities in the skeletal muscle. These results suggest that CE attenuates obesity-associated inflammation by modulating the muscle AMPK-SIRT1 pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Chrysanthemum/química , Flores/química , Inflamação/tratamento farmacológico , Mitocôndrias Musculares/metabolismo , Obesidade/complicações , Extratos Vegetais/uso terapêutico , Sirtuína 1/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Dieta Hiperlipídica , Dislipidemias/complicações , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertrofia , Inflamação/etiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Extratos Vegetais/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
15.
Antioxidants (Basel) ; 10(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34573085

RESUMO

The Mulberry (Morus alba L.) fruit is a rich source of polyphenolic compounds; most of these are anthocyanins. Obesity is intimately related to low-grade inflammation, with increased pro-inflammatory cytokine secretion and macrophage infiltration in white adipose tissue (WAT). This study investigated whether mulberry fruit extract (ME) has beneficial effects on obesity-induced inflammation and skeletal muscle mitochondrial dysfunction. Sprague-Dawley rats were divided into four groups and fed either a low-fat diet (LFD), high-fat diet (HFD), HFD + 5 g/kg of ME (ME-L), or HFD + 10 g/kg of ME (ME-H) for 14 weeks. ME alleviated dyslipidemia and lipid accumulation, as well as pro-inflammatory cytokine production such as tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and monocyte chemoattractant protein 1 (MCP1) in the WAT. ME mitigated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation and macrophage infiltration in WAT. Notably, microRNA (miR)-21, miR-132, and miR-43 expressions were downregulated in the WAT of the ME groups compared to the HFD group. Moreover, ME increased the mitochondrial size and mitochondrial DNA (mtDNA) content, as well as key genes' expression related to mitochondrial function, including sirtuin (SIRT)1, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), carnitine palmitoyltransferase 1ß (CPT-1ß), and uncoupling protein 3 (UCP3), and adenosine monophosphate-activated protein kinase (AMPK)/SIRT activities in skeletal muscle. These results suggested that ME might alleviate obesity-induced inflammation and mitochondrial dysfunction by regulating miR-21, miR-132, and miR-43 expression in WAT, and by activating the PGC-1α/SIRT1 pathway in muscle.

16.
Food Nutr Res ; 652021.
Artigo em Inglês | MEDLINE | ID: mdl-33994909

RESUMO

BACKGROUND: Mulberry leaf (Morus alba L.) contains multiple bioactive ingredients and has been used in the treatment of obesity, diabetes, inflammation, and atherosclerosis. High hydrostatic pressure (HHP) processing has been developed for the extraction of bioactive compounds from plants. However, the hypocholesterolemic effect of the HHP extract from mulberry leaves and its underlying mechanism have never been investigated. OBJECTIVE: The specific aim of the present study was to investigate the hypocholesterolemic property of a novel extract obtained from mulberry leaves under HHP in rats. DESIGN: Sprague-Dawley rats were divided into four groups and fed either a normal diet (NOR), a high cholesterol diet containing 1% cholesterol and 0.5% cholic acid (HC), an HC diet containing 0.5% mulberry leaf extract (ML), or a 1% mulberry leaf extract (MH) for 4 weeks. RESULTS: High hydrostatic pressure extract of mulberry leaves significantly reduced the HC-increased serum levels of triglyceride (TG), cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), and hepatic contents of TG and TC. The HHP extraction from mulberry leaves also increased the HC-decreased fecal TC and bile acid levels without changing body weight, food intake, liver weight, and serum activities of alanine transaminase (ALT) and aspartate transaminase (AST) (P < 0.05). The mulberry leaf extract significantly enhanced the expression of hepatic genes such as cholesterol 7 alpha-hydroxylase (CYP7A1), liver X receptor alpha (LXRα), and ATP-binding cassette transporters, ABCG5/ABCG8, involved in hepatic bile acid synthesis and cholesterol efflux (P < 0.05). In addition, the HHP extraction of mulberry leaves significantly suppressed hepatic microRNA(miR)-33 expression and increased adenosine monophosphate-activated protein kinase (AMPK) activity. CONCLUSION: These results suggest that the HHP extract of mulberry leaves lowers serum cholesterol levels by partially increasing hepatic bile acid synthesis and fecal cholesterol excretion through the modulation of miR-33 expression and AMPK activation in the liver.

17.
J Med Food ; 23(3): 266-272, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32191574

RESUMO

Mulberry (Morus alba L.) fruits have long been used in traditional medicine and as edible berries in many countries. This study investigated the antiadipogenic effect of high hydrostatic pressure mulberry fruit extract (MFE) during 3T3-L1 adipocyte differentiation. MFE decreased lipid and triglyceride accumulation and glycerol-3-phosphate dehydrogenase activity. The mRNA expression levels of genes related to adipogenesis, such as the adipocyte protein 2, proliferator-activated receptor-γ, and CCAAT/enhancer binding protein-α, were suppressed by MFE. They also reduced microRNA (miR)-21 and miR-143 expression, which are involved in adipogenesis. In contrast, adenosine monophosphate-activated protein kinase (AMPK) activity was increased by MFE. These results suggested that MFE may suppress adipogenesis through modulating miR-21/143 expression and AMPK activity in 3T3-L1 adipocytes, which may be useful as antiobesity food agents.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/citologia , Adipogenia/efeitos dos fármacos , MicroRNAs/genética , Morus/química , Extratos Vegetais/farmacologia , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/genética , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Fármacos Antiobesidade/química , Fármacos Antiobesidade/farmacologia , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Regulação para Baixo/efeitos dos fármacos , Frutas/química , Humanos , Camundongos , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/metabolismo , PPAR gama/metabolismo , Extratos Vegetais/química , Triglicerídeos/metabolismo
18.
Nutrients ; 12(9)2020 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-32899992

RESUMO

Chrysanthemum (Chrysanthemum morifolium Ramat) flowers (CF) are widely consumed as herbal tea in many countries, including China. The aim of the present study was to examine the anti-adipogenic effect of hot water extraction of CF (HCF) on 3T3-L1 cells and their underlying cellular mechanisms. HCF treatment inhibited lipid accumulation under conditions that did not show the toxicity of 3T3-L1 adipocytes. The activity of glycerol-3-phosphate dehydrogenase (GPDH), which plays an important role in glycerol lipid metabolism, was also reduced by HCF. Adipogenesis/lipogenesis-related mRNA expression levels of peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-α (CEBP-α), sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid-binding protein 4 (FABP4), acetyl-CoA carboxylase 1 (ACC1), and fatty acid synthase (FAS) were suppressed by HCF in a dose-dependent manner. Moreover, HCF increased activities of AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1), involved in lipid metabolism. These findings suggest that HCF inhibits adipocyte lipid accumulation through suppression of adipogenesis/lipogenesis-related gene expression and activation of the AMPK/SIRT1 pathway. Therefore, it suggests that HCF may be used as a potentially beneficial plant material for preventing obesity.


Assuntos
Adipogenia/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Chrysanthemum , Flores , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Camundongos , Sirtuína 1/metabolismo
19.
Nutrients ; 12(5)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455724

RESUMO

Serum high-density lipoprotein cholesterol (HDL-C) levels and cholesterol excretion are closely associated with the risk of cardiovascular complications. The specific aim of the present study was to investigate the cholesterol lowering effect of mulberry fruit in rats fed a high cholesterol/cholic acid diet. Four-week supplementation with mulberry fruit extract significantly decreased serum and hepatic cholesterol (TC), serum low-density lipoprotein cholesterol (LDL-C), and fecal bile acid levels without changes in body weight and food intake (p < 0.05). Mulberry fruit extract significantly inhibited hepatic sterol-regulatory element binding protein (Srebp) 2 gene expression and upregulated hepatic mRNA levels of liver X receptor alpha (Lxr-α), ATP-binding cassette transporter 5 (Abcg5), and cholesterol 7 alpha-hydroxylase (Cyp7a1), which are involved in hepatic bile acid synthesis and cholesterol metabolism (p < 0.05). In addition, hepatic microRNA-33 expression was significantly inhibited by supplementation of mulberry fruit extract (p < 0.05). These results suggest the involvement of miR-33, its associated hepatic bile acid synthesis, HDL formation, and cholesterol metabolism in mulberry fruit-mediated beneficial effects on serum and hepatic lipid abnormalities.


Assuntos
HDL-Colesterol/sangue , Colesterol/efeitos adversos , Ácido Cólico/efeitos adversos , Frutas/química , Fígado/metabolismo , MicroRNAs/metabolismo , Morus/química , Extratos Vegetais/farmacologia , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Ácidos e Sais Biliares , Colesterol/sangue , Colesterol 7-alfa-Hidroxilase/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hipercolesterolemia/metabolismo , Lipoproteínas/genética , Lipoproteínas LDL/sangue , Fígado/patologia , Receptores X do Fígado/genética , Masculino , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
20.
Biosci Biotechnol Biochem ; 73(2): 434-6, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19202275

RESUMO

In this study, we investigated the effects of green tea (-)-epigallocatechin-3-gallate (EGCG) on the mRNA level and promoter activity of uncoupling protein 2 (UCP2), a mitochondrial membrane transporter that regulates energy expenditure and thermogenesis in 3T3-L1 adipocytes. EGCG up-regulated the UCP2 mRNA level in a dose-dependent manner. UCP2 promoter activity was significantly stimulated by EGCG treatment, to an extent similar to that seen in mRNA expression. These results suggest that expression of UCP2 gene is directly regulated by green tea EGCG, which is mediated through the transcriptional activation of its proximal promoter.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Catequina/análogos & derivados , Regulação da Expressão Gênica/efeitos dos fármacos , Canais Iônicos/genética , Proteínas Mitocondriais/genética , Células 3T3-L1 , Animais , Catequina/farmacologia , Camundongos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Desacopladora 2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA