RESUMO
A series of designed stilbenoid-flavanone hybrids featuring sp3-hybridized C2 and C3 atoms of C-ring was evaluated against colorectal cancers presented compounds 4, 17, and 20 as the most potential compounds among explored compounds. Evaluation of the anticancer activity spectrum of compounds 4, 17, and 20 against diverse solid tumors presented compounds 17 and 20 with interesting anticancer spectrum. The potencies of compounds 17 and 20 were assessed in comparison with FDA-approved anticancer drugs. Compound 17 was the, in general, the most potent showing low micromolar GI50 values that were more potent than the standard FDA-approved drugs against several solid tumors including colon, brain, skin, renal, prostate and breast tumors. Compound 17 was subjected for evaluation against normal cell lines and was subjected to a mechanism study in HCT116 colon cancer cells which presented it as an inhibitor of Wnt signaling pathway triggering G2/M cell cycle arrest though activation of p53-p21 pathway as well as intrinsic and extrinsic apoptotic death of colon cancer cells. Compound 17 might be a candidate for further development against diverse solid tumors including colon cancer.
Assuntos
Antineoplásicos , Neoplasias do Colo , Flavanonas , Iohexol/análogos & derivados , Estilbenos , Masculino , Humanos , Via de Sinalização Wnt , Estilbenos/farmacologia , Antineoplásicos/farmacologia , Células HCT116 , Flavanonas/farmacologia , Apoptose , Neoplasias do Colo/tratamento farmacológico , Proliferação de Células , Linhagem Celular Tumoral , beta Catenina/metabolismoRESUMO
A targeted metabologenomic method was developed to selectively discover terminal oxazole-bearing natural products from bacteria. For this, genes encoding oxazole cyclase, a key enzyme in terminal oxazole biosynthesis, were chosen as the genomic signature to screen bacterial strains that may produce oxazole-bearing compounds. Sixteen strains were identified from the screening of a bacterial DNA library (1,000â strains) using oxazole cyclase gene-targeting polymerase chain reaction (PCR) primers. The PCR amplicon sequences were subjected to phylogenetic analysis and classified into nine clades. 1H-13C coupled-HSQC NMR spectra obtained from the culture extracts of the hit strains enabled the unequivocal detection of the target compounds, including five new oxazole compounds, based on the unique 1JCH values and chemical shifts of oxazole: lenzioxazole (1) possessing an unprecedented cyclopentane, permafroxazole (2) bearing a tetraene conjugated with carboxylic acid, tenebriazine (3) incorporating two modified amino acids, and methyl-oxazolomycins A and B (4 and 5). Tenebriazine displayed inhibitory activity against pathogenic fungi, whereas methyl-oxazolomycins A and B (4 and 5) selectively showed anti-proliferative activity against estrogen receptor-positive breast cancer cells. This metabologenomic method enables the logical and efficient discovery of new microbial natural products with a target structural motif without the need for isotopic labeling.
Assuntos
Produtos Biológicos , Oxazóis , Oxazóis/química , Oxazóis/farmacologia , Oxazóis/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Metabolômica , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Bactérias/efeitos dos fármacosRESUMO
A targeted and logical discovery method was devised for natural products containing piperazic acid (Piz), which is biosynthesized from ornithine by l-ornithine N-hydroxylase (KtzI) and N-N bond formation enzyme (KtzT). Genomic signature-based screening of a bacterial DNA library (2020 strains) using polymerase chain reaction (PCR) primers targeting ktzT identified 62 strains (3.1%). The PCR amplicons of KtzT-encoding genes were phylogenetically analyzed to classify the 23 clades into two monophyletic groups, I and II. Cultivating hit strains in media supplemented with 15NH4Cl and applying 1H-15N heteronuclear multiple bond correlation (HMBC) along with 1H-15N heteronuclear single quantum coherence (HSQC) and 1H-15N HSQC-total correlation spectroscopy (HSQC-TOCSY) NMR experiments detected the spectroscopic signatures of Piz and modified Piz. Chemical investigation of the hit strains prioritized by genomic and spectroscopic signatures led to the identification of a new azinothricin congener, polyoxyperuin B seco acid (1), previously reported chloptosin (2) in group I, depsidomycin D (3) incorporating two dehydropiperazic acids (Dpz), and lenziamides A and B (4 and 5), structurally novel 31-membered cyclic decapeptides in group II. By consolidating the phylogenetic and chemical analyses, clade-structure relationships were elucidated for 19 of the 23 clades. Lenziamide A (4) inhibited STAT3 activation and induced G2/M cell cycle arrest, apoptotic cell death, and tumor growth suppression in human colorectal cancer cells. Moreover, lenziamide A (4) resensitized 5-fluorouracil (5-FU) activity in both in vitro cell cultures and the in vivo 5-FU-resistant tumor xenograft mouse model. This work demonstrates that the genomic and spectroscopic signature-based searches provide an efficient and general strategy for new bioactive natural products containing specific structural motifs.
Assuntos
Produtos Biológicos , Genômica , Humanos , Animais , Camundongos , Filogenia , Análise Espectral , Produtos Biológicos/farmacologiaRESUMO
The logical and effective discovery of macrolactams, structurally unique natural molecules with diverse biological activities, has been limited by a lack of targeted search methods. Herein, a targeted discovery method for natural macrolactams was devised by coupling genomic signature-based PCR screening of a bacterial DNA library with spectroscopic signature-based early identification of macrolactams. DNA library screening facilitated the efficient selection of 43 potential macrolactam-producing strains (3.6% of 1,188 strains screened). The PCR amplicons of the amine-deprotecting enzyme-coding genes were analyzed to predict the macrolactam type (α-methyl, α-alkyl, or ß-methyl) produced by the hit strains. 1H-15N HSQC-TOCSY NMR analysis of 15N-labeled culture extracts enabled macrolactam detection and structural type assignment without any purification steps. This method identified a high-titer Micromonospora strain producing salinilactam (1), a previously reported α-methyl macrolactam, and two Streptomyces strains producing new α-alkyl and ß-methyl macrolactams. Subsequent purification and spectroscopic analysis led to the structural revision of 1 and the discovery of muanlactam (2), an α-alkyl macrolactam with diene amide and tetraene chromophores, and concolactam (3), a ß-methyl macrolactam with a [16,6,6]-tricyclic skeleton. Detailed genomic analysis of the strains producing 1-3 identified putative biosynthetic gene clusters and pathways. Compound 2 displayed significant cytotoxicity against various cancer cell lines (IC50 = 1.58 µM against HCT116), whereas 3 showed inhibitory activity against Staphylococcus aureus sortase A. This genomic and spectroscopic signature-based method provides an efficient search strategy for new natural macrolactams and will be generally applicable for the discovery of nitrogen-bearing natural products.
Assuntos
Streptomyces , Estrutura Molecular , Lactamas Macrocíclicas/farmacologia , Lactamas Macrocíclicas/química , Streptomyces/metabolismo , Genômica , Reação em Cadeia da Polimerase , Família MultigênicaRESUMO
Seven previously undescribed tetrahydrofuran lignans with different configurations and unusual isopentenyl substitutions, nitidumlignans D-J (corresponding to compounds 1, 2, 4, 6, 7, 9 and 10), along with 14 known lignans, were isolated from Zanthoxylum nitidum. Notably, compound 4 is an uncommon naturally occurring furan-core lignan derived from tetrahydrofuran aromatization. The antiproliferation activity of the isolated compounds (1-21) was determined in various human cancer cell lines. The structure-activity study revealed that the steric positioning and chirality of the lignans exert important effects on their activity and selectivity. In particular, compound 3 (sesaminone) exhibited potent antiproliferative activity in cancer cells, including acquired osimertinib-resistant non-small-cell lung cancer (HCC827-osi) cells. Compound 3 also inhibited colony formation and induced the apoptotic death of HCC827-osi cells. The underlying molecular mechanisms revealed that 3 downregulated the activation of the c-Met/JAK1/STAT3 and PI3K/AKT/mTOR signaling pathways in the HCC827-osi cells. In addition, the combination of 3 and osimertinib exhibited synergistic effects on the antiproliferative activity against HCC827-osi cells. Overall, these findings inform the structure elucidation of novel lignans isolated from Z. nitidum, and sesaminone was identified as a potential compound for exerting antiproliferative effects on osimertinib-resistant lung cancer cells.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Lignanas , Neoplasias Pulmonares , Zanthoxylum , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Zanthoxylum/química , Fosfatidilinositol 3-Quinases , Proliferação de Células , Lignanas/química , Furanos/farmacologia , Linhagem Celular TumoralRESUMO
Herein, atropisomeric 8-aryltetrahydroisoquinolines have been synthesized and biologically evaluated. Based on our structure-activity relationship study, a highly bioactive racemic compound has been produced, and it exhibited high antiproliferative activities against various cancer cell lines, including docetaxel-resistant breast cancer cell lines. Each enantiomer can be synthesized in an enantioselective manner by employing the chiral phosphoric acid-catalyzed atroposelective Pictet-Spengler cyclization. An axially (R)-configured enantiomer showed a higher biological activity compared with the axially (S)-configured enantiomer. Further biological studies suggested that the (R)-enantiomer overcomes docetaxel resistance via the downregulation of signal transducer and activator of transcription 3 activation and consequently induces cellular apoptosis in docetaxel-resistant triple-negative breast cancer cell lines.
Assuntos
Tetra-Hidroisoquinolinas , Neoplasias de Mama Triplo Negativas , Humanos , Docetaxel/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Apoptose , Linhagem Celular TumoralRESUMO
Temozolomide (TMZ) has been used as standard-of-care for glioblastoma multiforme (GBM), but the resistance to TMZ develops quickly and frequently. Thus, more studies are needed to elucidate the resistance mechanisms. In the current study, we investigated the relationship among the three important phenotypes, namely TMZ-resistance, cell shape and lipid metabolism, in GBM cells. We first observed the distinct difference in cell shapes between TMZ-sensitive (U87) and resistant (U87R) GBM cells. We then conducted NMR-based lipid metabolomics, which revealed a significant increase in cholesterol and fatty acid synthesis as well as lower lipid unsaturation in U87R cells. Consistent with the lipid changes, U87R cells exhibited significantly lower membrane fluidity. The transcriptomic analysis demonstrated that lipid synthesis pathways through SREBP were upregulated in U87R cells, which was confirmed at the protein level. Fatostatin, an SREBP inhibitor, and other lipid pathway inhibitors (C75, TOFA) exhibited similar or more potent inhibition on U87R cells compared to sensitive U87 cells. The lower lipid unsaturation ratio, membrane fluidity and higher fatostatin sensitivity were all recapitulated in patient-derived TMZ-resistant primary cells. The observed ternary relationship among cell shape, lipid composition, and TMZ-resistance may be applicable to other drug-resistance cases. SREBP and fatostatin are suggested as a promising target-therapeutic agent pair for drug-resistant glioblastoma.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Forma Celular , Metabolismo dos Lipídeos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Resistencia a Medicamentos Antineoplásicos , Lipídeos , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Antineoplásicos Alquilantes/farmacologiaRESUMO
Two new macrocyclic secondary metabolites, glycosyl-migrastatin (1) and 5-hydroxy-migrastatin (2), were isolated from a gut bacterium Kitasatospora sp. JL24 in dung beetle Onthophagus lenzii. Based on a comprehensive analysis of the nuclear magnetic resonance (NMR), MS, and UV spectroscopic data, the planar structures of 1 and 2 were successfully identified as new derivatives of migrastatin. Compound 1 was the first glycosylated member of the migrastatin family. The absolute configuration of the sugar moiety was determined to be d-glucose through the analysis of coupling constants and ROESY correlations, followed by chemical derivatization and chromatographic comparison with authentic d- and l-glucose. Compound 2, identified as 5-hydroxy-migrastatin possessing an additional hydroxy group with a previously unreported chiral center, was assigned using Mosher's method through 19F NMR chemical shifts and confirmed with the modified Mosher's method. Genomic analysis of Kitasatospora sp. strain JL24 revealed a putative biosynthetic pathway involving an acyltransferase-less type I polyketide synthase biosynthetic gene cluster. ONE-SENTENCE SUMMARY: Two secondary metabolites, glycosyl-migrastatin (1) and 5-hydroxy-migrastatin (2), were discovered from the gut bacterium Kitasatospora sp. JL24 in the dung beetle Onthophagus lenzii.
Assuntos
Macrolídeos , Piperidonas , Espectroscopia de Ressonância Magnética , Bactérias , Estrutura MolecularRESUMO
Four new chlorinated cycloaromatized enediyne compounds, jejucarbosides B-E (1-4), were discovered together with previously-identified jejucarboside A from a marine actinomycete strain. Compounds 1-4 were identified as new chlorinated cyclopenta[a]indene glycosides based on 1D and 2D nuclear magnetic resonance, high-resolution mass spectrometry, and circular dichroism (CD) spectra. Jejucarbosides B and E bear a carbonate functional group whereas jejucarbosides C and D are variants possessing 1,2-diol by losing the carbonate functionality. It is proposed that the production of 1-4 occurs via Bergman cycloaromatization capturing Cl- and H+ in the alternative positions of a p-benzyne intermediate derived from a 9-membered enediyne core. Jejucarboside E (4) displayed significant cytotoxicity against human cancer cell lines including SNU-638, SK-HEP-1, A549, HCT116, and MDA-MB-231, with IC50 values of 0.31, 0.40, 0.25, 0.29, and 0.48 µM, respectively, while jejucarbosides B-D (1-3) showed moderate or no cytotoxic effects.
Assuntos
Antineoplásicos , Streptomyces , Humanos , Enedi-Inos/química , Streptomyces/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Glicosídeos/química , Linhagem Celular , Estrutura MolecularRESUMO
Two new proton-deficient metabolites, tandocyclinones A and B (1 and 2), were discovered via the chemical profiling of the Streptomyces sp. strain TDH03, which was isolated from a marine sediment sample collected from the intertidal mudflat in Tando Port, the Republic of Korea. The structures of 1 and 2 were elucidated as new ether-bridged C-glycosyl benz[a]anthracenes by using a combination of spectroscopic analyses of ultraviolet (UV) and mass spectrometry (MS) data, along with nuclear magnetic resonance (NMR) spectra, which were acquired in tetrahydrofuran (THF)-d8 selected after an extensive search for a solvent, resulting in mostly observable exchangeable protons in the 1H NMR spectrum. Their configurations were successfully assigned by applying a J-based configuration analysis, rotating-frame Overhauser enhancement spectroscopy (ROESY) NMR correlations, chemical derivatization methods based on NMR (a modified version of Mosher's method) and circular dichroism (CD) (Snatzke's method using Mo2(OAc)4-induced CD), as well as quantum-mechanics-based computational methods, to calculate the electronic circular dichroism (ECD). Tandocyclinones A and B (1 and 2) were found to have weak antifungal activity against Trichophyton mentagrophytes IFM40996 with an MIC value of 128 µg/mL (244 and 265 µM for 1 and 2, respectively). A further biological evaluation revealed that tandocyclinone A (1) displayed inhibitory activity against Mycobacterium avium (MIC50 = 40.8 µM) and antiproliferative activity against SNU638 and HCT116 cancer cells, with IC50 values of 31.9 µM and 49.4 µM, respectively.
RESUMO
Cihunamidesâ A-D (1-4), novel antibacterial RiPPs, were isolated from volcanic-island-derived Streptomyces sp. The structures of 1-4 were elucidated by 1 H, 13 C, and 15 N NMR, MS, and chemical derivatization; they contain a tetrapeptide core composed of WNIW, cyclized by a unique C-N linkage between two Trp units. Genome mining of the producer strain revealed two biosynthetic genes encoding a cytochromeâ P450 enzyme and a precursor peptide. Heterologous co-expression of the core genes demonstrated the biosynthesis of cihunamides through P450-mediated oxidative Trp-Trp cross-linking. Further bioinformatic analysis uncovered 252 homologous gene clusters, including that of tryptorubins, which possess a distinct Trp-Trp linkage. Cihunamides do not display the non-canonical atropisomerism shown in tryptorubins, which are the founding members of the "atropitide" family. Therefore, we propose to use a new RiPP family name, "bitryptides", for cihunamides, tryptorubins, and their congeners, wherein the Trp-Trp linkages define the structural class rather than non-canonical atropisomerism.
Assuntos
Produtos Biológicos , Peptídeos , Peptídeos/química , Biologia Computacional , Processamento de Proteína Pós-Traducional , Genoma , Sistema Enzimático do Citocromo P-450/genéticaRESUMO
Alkaloids derived from natural products have been traditionally used to treat various diseases, including cancers. Rutaecarpine (1), a ß-carboline-type alkaloid obtained from Evodia rutaecarpa, has been previously reported as an anti-inflammatory agent. Nonetheless, its anticancer activity and the underlying molecular mechanisms remain to be explored. In the procurement of Wnt/ß-catenin inhibitors from natural alkaloids, 1 was found to exhibit activity against the Wnt/ß-catenin-response reporter gene. Since the abnormal activation of Wnt/ß-catenin signaling is highly involved in colon carcinogenesis, the antitumor activity and molecular mechanisms of 1 were investigated in colorectal cancer (CRC) cells. The antiproliferative activity of 1 was associated with the suppression of the Wnt/ß-catenin-mediated signaling pathway and its target gene expression in human CRC cells. 1 also induced G0/G1 cell cycle arrest and apoptotic cell death, and the antimigration and anti-invasion potential of 1 was confirmed through epithelial-mesenchymal transition biomarker inhibition by the regulation of Wnt signaling. The antitumor activity of 1 was supported in an Ls174T-implanted xenograft mouse model via Wnt target gene regulation. Overall, these findings suggest that targeting the Wnt/ß-catenin signaling pathway by 1 is a promising therapeutic option for the treatment of human CRC harboring ß-catenin mutation.
Assuntos
Neoplasias Colorretais , Via de Sinalização Wnt , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Humanos , Alcaloides Indólicos , Camundongos , Quinazolinas , beta CateninaRESUMO
A new bicyclic macrolide, hamuramicin C (1), was isolated from Streptomyces sp. MBP16, a gut bacterial strain of the wasp Vespa crabro flavofasciata. Its 22-membered macrocyclic lactone structure was determined by NMR and mass spectrometry. The relative configurations of hamuramicin C (1) were assigned by J-based configuration analysis utilizing 1H rotating frame Overhauser effect spectroscopy and heteronuclear long-range coupling NMR spectroscopy. Genomic and bioinformatic analyses of the bacterial strain enabled identification of the type-I polyketide synthase pathway, which employs a trans-acyltransferase system. The absolute configurations of 1 were proposed based on the analysis of the sequences of ketoreductases in the modular gene cluster. Moreover, hamuramicin C (1) demonstrated significant inhibitory activity against diverse human cancer cell lines (HCT116, A549, SNU-638, SK-HEP-1, and MDA-MB-231).
Assuntos
Antineoplásicos , Streptomyces , Vespas , Animais , Antibacterianos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Humanos , Macrolídeos/química , Estrutura Molecular , Policetídeo Sintases/metabolismo , Streptomyces/químicaRESUMO
Piceamycin (1), a macrocyclic lactam isolated from the silkworm's gut (Streptomyces sp. SD53 strain), reportedly possesses antibacterial activity. However, the potential anticancer activity and molecular processes underlying 1 have yet to be reported. Colorectal cancer (CRC) is high-risk cancer and accounts for 10% of all cancer cases worldwide. The high prevalence of resistance to radiation or chemotherapy means that patients with advanced CRC have a poor prognosis, with high recurrence and metastasis potential. Therefore, the present study investigated the antitumor effect and underlying mechanisms of 1 in CRC cells. The growth-inhibiting effect of 1 in CRC cells was correlated with the upregulation of a tumor suppressor, N-myc downstream-regulated gene 1 (NDRG1). Additionally, 1 induced G0/G1 cell cycle arrest and apoptosis and inhibited the migration of CRC cells. Notably, 1 disrupted the interaction between NDRG1 and c-Myc in CRC cells. In a mouse model with HCT116-implanted xenografts, the antitumor activity of 1 was confirmed by NDRG1 modulation. Overall, these findings show that 1 is a potential candidate for CRC treatment through regulation of NDGR1-mediated functionality.
Assuntos
Proteínas de Ciclo Celular , Neoplasias Colorretais , Animais , Camundongos , Humanos , Lactamas Macrocíclicas , Regulação para Cima , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Proliferação de Células , Linhagem Celular TumoralRESUMO
A new nonribosomal peptide, nyuzenamide C (1), was discovered from riverine sediment-derived Streptomyces sp. DM14. Comprehensive analysis of the spectroscopic data of nyuzenamide C (1) revealed that 1 has a bicyclic backbone composed of six common amino acid residues (Asn, Leu, Pro, Gly, Val, and Thr) and four nonproteinogenic amino acid units, including hydroxyglycine, ß-hydroxyphenylalanine, p-hydroxyphenylglycine, and 3,ß-dihydroxytyrosine, along with 1,2-epoxypropyl cinnamic acid. The absolute configuration of 1 was proposed by J-based configuration analysis, the advanced Marfey's method, quantum mechanics-based DP4 calculations, and bioinformatic analysis of its nonribosomal peptide synthetase biosynthetic gene cluster. Nyuzenamide C (1) displayed antiangiogenic activity in human umbilical vein endothelial cells and induced quinone reductase in murine Hepa-1c1c7 cells.
Assuntos
Streptomyces , Aminoácidos/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Cinamatos , Células Endoteliais/metabolismo , Humanos , Camundongos , Fragmentos de Peptídeos , Peptídeos/química , Streptomyces/químicaRESUMO
Single-strain cultivation of a mountain soil-derived Streptomyces sp. GA02 and its coculture with Pandoraea sp. GA02N produced two aromatic products, gwanakosides A and B (1 and 2, respectively). Their spectroscopic analysis revealed that 1 is a new dichlorinated naphthalene glycoside and 2 is a pentacyclic aromatic glycoside. The assignment of the two chlorine atoms in 1 was confirmed by the analysis of its band-selective CLIP-HSQMBC spectrum. The sugars in the gwanakosides were identified as 6-deoxy-α-l-talopyranose based on 1H-1H coupling constants, Rotating frame Overhauser enhancement spectroscopy (ROESY) NMR correlations, and chemical derivatization followed by spectroscopic and chromatographic analyses. The absolute configuration of 2, whose production was enhanced approximately 100-fold in coculture, was proposed based on a quantum mechanics-based chemical shift analysis method, DP4 calculations, and the chemically determined configuration of 6-deoxy-α-l-talopyranose. Gwanakoside A displayed inhibitory activity against pathogenic bacteria, including Staphylococcus aureus (MIC = 8 µg/mL) and Mycobacterium tuberculosis (MIC50 = 15 µg/mL), and antiproliferative activity against several human cancer cell lines (IC50 = 5.6-19.4 µM).
Assuntos
Burkholderiaceae , Streptomyces , Humanos , Burkholderiaceae/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Ensaios de Seleção de Medicamentos Antitumorais , Testes de Sensibilidade Microbiana , Mycobacterium/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , Teoria Quântica , Espectrometria de Massas por Ionização por Electrospray , Staphylococcus aureus/efeitos dos fármacos , Streptomyces/metabolismoRESUMO
The dried root of Angelica sinensis (A. sinensis) has been widely used in Chinese traditional medicine for various diseases such as inflammation, osteoarthritis, infections, mild anemia, fatigue, and high blood pressure. Searching for the secondary metabolites of A. sinensis has been mainly conducted. However, the bioactivity of coumarins in the plant remains unexplored. Therefore, this study was designed to evaluate the anti-inflammatory activity of glabralactone, a coumarin compound from A. sinensis, using in vitro and in vivo models, and to elucidate the underlying molecular mechanisms of action. Glabralactone effectively inhibited nitric oxide production in lipopolysaccharide- (LPS-) stimulated RAW264.7 macrophage cells. The downregulation of LPS-induced mRNA and protein expression of iNOS, TNF-α, IL-1ß, and miR-155 was found by glabralactone. The activation of NF-κB and TRIF-dependent IRF-3 pathway was also effectively suppressed by glabralactone in LPS-stimulated macrophages. Glabralactone (5 and 10 mg/kg) exhibited an in vivo anti-inflammatory activity with the reduction of paw edema volume in carrageenan-induced rat model, and the expressions of iNOS and IL-1ß proteins were suppressed by glabralactone in the paw soft tissues of the animal model. Taken together, glabralactone exhibited an anti-inflammatory activity in in vitro and in vivo models. These findings reveal that glabralactone might be one of the potential components for the anti-inflammatory activity of A. sinensis and may be prioritized in the development of a chemotherapeutic agent for the treatment of inflammatory diseases.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Angelica sinensis , Cumarínicos , Fator Regulador 3 de Interferon , NF-kappa B , Proteínas Adaptadoras de Transporte Vesicular/antagonistas & inibidores , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Angelica sinensis/química , Animais , Anti-Inflamatórios/farmacologia , Cumarínicos/farmacologia , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Fator Regulador 3 de Interferon/antagonistas & inibidores , Fator Regulador 3 de Interferon/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Ratos , Transdução de Sinais/efeitos dos fármacosRESUMO
Cinnamoyl-containing nonribosomal peptides (CCNPs) form a unique family of actinobacterial secondary metabolites and display various biological activities. A new CCNP named epoxinnamide (1) was discovered from intertidal mudflat-derived Streptomyces sp. OID44. The structure of 1 was determined by the analysis of one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) data along with a mass spectrum. The absolute configuration of 1 was assigned by the combination of advanced Marfey's method, 3JHH and rotating-frame overhauser effect spectroscopy (ROESY) analysis, DP4 calculation, and genomic analysis. The putative biosynthetic pathway of epoxinnamide (1) was identified through the whole-genome sequencing of Streptomyces sp. OID44. In particular, the thioesterase domain in the nonribosomal peptide synthetase (NRPS) biosynthetic gene cluster was proposed as a bifunctional enzyme, which catalyzes both epimerization and macrocyclization. Epoxinnamide (1) induced quinone reductase (QR) activity in murine Hepa-1c1c7 cells by 1.6-fold at 5 µM. It also exhibited effective antiangiogenesis activity in human umbilical vein endothelial cells (IC50 = 13.4 µM).
Assuntos
Streptomyces , Animais , Vias Biossintéticas , Células Endoteliais/metabolismo , Humanos , Camundongos , Família Multigênica , Peptídeo Sintases/genética , Peptídeos/metabolismo , Streptomyces/metabolismoRESUMO
Streptomyces sp. GET02.ST and Achromobacter sp. GET02.AC were isolated together from the gut of the wharf roach, Ligia exotica, inhabiting the intertidal zone of the west coast of Korea. The co-cultivation of these two strains significantly induced the production of two new metabolites, ligiamycins A (1) and B (2), which were barely detected in the single culture of Streptomyces sp. GET02.ST. The planar structures of ligiamycins A (1) and B (2) were elucidated as new decalins coupled with amino-maleimides by the analysis of various spectroscopic data, including nuclear magnetic resonance (NMR), ultraviolet (UV), and mass (MS) data. The assignment of two nitrogen atoms in amino-maleimide in 1 was accomplished based on 1H-15N heteroatom single quantum coherence spectroscopy (HSQC) NMR experiments. The relative configurations of the ligiamycins were determined using rotating frame Overhauser effect spectroscopy (ROESY) NMR data, and their absolute configurations were deduced by comparing their experimental and calculated optical rotations. Ligiamycin A (1) displayed antibacterial effects against Staphylococcus aureus and Salmonella enterica, while ligiamycin B (2) exhibited mild cell cytotoxicity against human colorectal cancer cells.
Assuntos
Antibacterianos , Antineoplásicos , Maleimidas , Naftalenos , Animais , Humanos , Achromobacter/metabolismo , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Neoplasias Colorretais/tratamento farmacológico , Isópodes/microbiologia , Naftalenos/química , Naftalenos/isolamento & purificação , Naftalenos/farmacologia , Streptomyces/metabolismo , Maleimidas/química , Maleimidas/isolamento & purificação , Maleimidas/farmacologiaRESUMO
Two new lipo-decapeptides, namely taeanamides A and B (1 and 2), were discovered from the Gram-positive bacterium Streptomyces sp. AMD43, which was isolated from a mudflat sample from Anmyeondo, Korea. The exact molecular masses of 1 and 2 were revealed by high-resolution mass spectrometry, and the planar structures of 1 and 2 were elucidated using NMR spectroscopy. The absolute configurations of 1 and 2 were determined using a combined analysis of 1H-1H coupling constants and ROESY correlations, the advanced Marfey's method, and bioinformatics. The putative nonribosomal peptide synthetase pathway for the taeanamides was identified by analyzing the full genome sequence data of Streptomyces sp. AMD43. We also found that taeanamide A exhibited mild anti-tuberculosis bioactivity, whereas taeanamide B showed significant bioactivity against several cancer cell lines.