Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(2): e2316583121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170753

RESUMO

The kinetochore scaffold 1 (KNL1) protein recruits spindle assembly checkpoint (SAC) proteins to ensure accurate chromosome segregation during mitosis. Despite such a conserved function among eukaryotic organisms, its molecular architectures have rapidly evolved so that the functional mode of plant KNL1 is largely unknown. To understand how SAC signaling is regulated at kinetochores, we characterized the function of the KNL1 gene in Arabidopsis thaliana. The KNL1 protein was detected at kinetochores throughout the mitotic cell cycle, and null knl1 mutants were viable and fertile but exhibited severe vegetative and reproductive defects. The mutant cells showed serious impairments of chromosome congression and segregation, that resulted in the formation of micronuclei. In the absence of KNL1, core SAC proteins were no longer detected at the kinetochores, and the SAC was not activated by unattached or misaligned chromosomes. Arabidopsis KNL1 interacted with SAC essential proteins BUB3.3 and BMF3 through specific regions that were not found in known KNL1 proteins of other species, and recruited them independently to kinetochores. Furthermore, we demonstrated that upon ectopic expression, the KNL1 homolog from the dicot tomato was able to functionally substitute KNL1 in A. thaliana, while others from the monocot rice or moss associated with kinetochores but were not functional, as reflected by sequence variations of the kinetochore proteins in different plant lineages. Our results brought insights into understanding the rapid evolution and lineage-specific connection between KNL1 and the SAC signaling molecules.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mitose , Cinetocoros/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo , Segregação de Cromossomos
2.
Proc Natl Acad Sci U S A ; 121(12): e2322677121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466841

RESUMO

The spindle assembly checkpoint (SAC) ensures faithful chromosome segregation during cell division by monitoring kinetochore-microtubule attachment. Plants produce both sequence-conserved and diverged SAC components, and it has been largely unknown how SAC activation leads to the assembly of these proteins at unattached kinetochores to prevent cells from entering anaphase. In Arabidopsis thaliana, the noncanonical BUB3.3 protein was detected at kinetochores throughout mitosis, unlike MAD1 and the plant-specific BUB1/MAD3 family protein BMF3 that associated with unattached chromosomes only. When BUB3.3 was lost by a genetic mutation, mitotic cells often entered anaphase with misaligned chromosomes and presented lagging chromosomes after they were challenged by low doses of the microtubule depolymerizing agent oryzalin, resulting in the formation of micronuclei. Surprisingly, BUB3.3 was not required for the kinetochore localization of other SAC proteins or vice versa. Instead, BUB3.3 specifically bound to BMF3 through two internal repeat motifs that were not required for BMF3 kinetochore localization. This interaction enabled BMF3 to recruit CDC20, a downstream SAC target, to unattached kinetochores. Taken together, our findings demonstrate that plant SAC utilizes unconventional protein interactions for arresting mitosis, with BUB3.3 directing BMF3's role in CDC20 recruitment, rather than the recruitment of BUB1/MAD3 proteins observed in fungi and animals. This distinct mechanism highlights how plants adapted divergent versions of conserved cell cycle machinery to achieve specialized SAC control.


Assuntos
Arabidopsis , Cinetocoros , Animais , Cinetocoros/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem do Ciclo Celular , Fuso Acromático/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(15): e2303037120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011205

RESUMO

Biomolecular condensates are nonmembranous structures that are mainly formed through liquid-liquid phase separation. Tensins are focal adhesion (FA) proteins linking the actin cytoskeleton to integrin receptors. Here, we report that GFP-tagged tensin-1 (TNS1) proteins phase-separate to form biomolecular condensates in cells. Live-cell imaging showed that new TNS1 condensates are budding from the disassembling ends of FAs, and the presence of these condensates is cell cycle dependent. TNS1 condensates dissolve immediately prior to mitosis and rapidly reappear while postmitotic daughter cells establish new FAs. TNS1 condensates contain selected FA proteins and signaling molecules such as pT308Akt but not pS473Akt, suggesting previously unknown roles of TNS1 condensates in disassembling FAs, as the storage of core FA components and the signaling intermediates.


Assuntos
Adesões Focais , Transdução de Sinais , Tensinas , Adesões Focais/metabolismo , Proteínas , Divisão Celular , Adesão Celular
4.
Plant Biotechnol J ; 20(7): 1311-1326, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35315196

RESUMO

Plant transcription factors (TFs), such as basic helix-loop-helix (bHLH) and AT-rich zinc-binding proteins (PLATZ), play critical roles in regulating the expression of developmental genes in cereals. We identified the bHLH protein TaPGS1 (T. aestivum Positive Regulator of Grain Size 1) specifically expressed in the seeds at 5-20 days post-anthesis in wheat. TaPGS1 was ectopically overexpressed (OE) in wheat and rice, leading to increased grain weight (up to 13.81% in wheat and 18.55% in rice lines) and grain size. Carbohydrate and total protein levels also increased. Scanning electron microscopy results indicated that the starch granules in the endosperm of TaPGS1 OE wheat and rice lines were smaller and tightly embedded in a proteinaceous matrix. Furthermore, TaPGS1 was bound directly to the E-box motif at the promoter of the PLATZ TF genes TaFl3 and OsFl3 and positively regulated their expression in wheat and rice. In rice, the OsFl3 CRISPR/Cas9 knockout lines showed reduced average thousand-grain weight, grain width, and grain length in rice. Our results reveal that TaPGS1 functions as a valuable trait-associated gene for improving cereal grain yield.


Assuntos
Grão Comestível , Oryza , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes , Triticum/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(52): 27115-27123, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31818952

RESUMO

γ-Tubulin typically forms a ring-shaped complex with 5 related γ-tubulin complex proteins (GCP2 to GCP6), and this γ-tubulin ring complex (γTuRC) serves as a template for microtubule (MT) nucleation in plants and animals. While the γTuRC takes part in MT nucleation in most eukaryotes, in fungi such events take place robustly with just the γ-tubulin small complex (γTuSC) assembled by γ-tubulin plus GCP2 and GCP3. To explore whether the γTuRC is the sole functional γ-tubulin complex in plants, we generated 2 mutants of the GCP6 gene encoding the largest subunit of the γTuRC in Arabidopsis thaliana. Both mutants showed similar phenotypes of dwarfed vegetative growth and reduced fertility. The gcp6 mutant assembled the γTuSC, while the wild-type cells had GCP6 join other GCPs to produce the γTuRC. Although the gcp6 cells had greatly diminished γ-tubulin localization on spindle MTs, the protein was still detected there. The gcp6 cells formed spindles that lacked MT convergence and discernable poles; however, they managed to cope with the challenge of MT disorganization and were able to complete mitosis and cytokinesis. Our results reveal that the γTuRC is not the only functional form of the γ-tubulin complex for MT nucleation in plant cells, and that γ-tubulin-dependent, but γTuRC-independent, mechanisms meet the basal need of MT nucleation. Moreover, we show that the γTuRC function is more critical for the assembly of spindle MT array than for the phragmoplast. Thus, our findings provide insight into acentrosomal MT nucleation and organization.

6.
New Phytol ; 226(4): 1213-1220, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31679162

RESUMO

Investigations of plant cell division would greatly benefit from a fast, inducible system. Therefore, we aimed to establish a mitotic model by transiently expressing D-type cyclins in tobacco leaf cells. Two different D-type cyclins, CYCD3;1 and CYCD4;2 from Arabidopsis thaliana, were expressed by agrobacterial infiltration in the cells of expanded leaves in tobacco (Nicotiana benthamiana). Leaf pavement cells were examined after cyclin expression while target and reference (histone or tubulin) proteins were marked by fluorescent protein-tagging. Ectopic expression of the D-type cyclin induced pavement cells to re-enter cell division by establishing mitotic microtubule arrays. The induced leaf cells expressed M phase-specific genes of Arabidopsis encoding the mitotic kinase AtAurora 1, the microtubule-associated proteins AtEDE1 and AtMAP65-4, and the vesicle fusion protein AtKNOLLE by recognizing their genomic elements. Their distinct localizations at spindle poles (AtAurora1), spindle microtubules (AtEDE1), phragmoplast microtubules (AtMAP65-4) and the cell plate (AtKNOLLE) were indistinguishable from those in their native Arabidopsis cells. The dividing cells also revealed two rice (Oryza sativa) microtubule-associated proteins in the phragmoplast and uncovered a novel spindle-associated microtubule motor protein. Hence, this cell division-enabled leaf system predicts hypothesized cell cycle-dependent functions of heterologous genes by reporting the dynamics of encoded proteins.


Assuntos
Proteínas de Arabidopsis , Nicotiana , Proteínas de Arabidopsis/genética , Ciclinas/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos , Mitose , Folhas de Planta , Fuso Acromático
7.
New Phytol ; 222(4): 1705-1718, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30681146

RESUMO

Contents Summary I. Introduction II. MT arrays in plant cells III. γ-Tubulin and MT nucleation IV. MT nucleation sites or flexible MTOCs in plant cells V. MT-dependent MT nucleation VI. Generating new MTs for spindle assembly VII. Generation of MTs for phragmoplast expansion during cytokinesis VIII. MT generation for the cortical MT array IX. MT nucleation: looking forward Acknowledgements References SUMMARY: Cytoskeletal microtubules (MTs) have a multitude of functions including intracellular distribution of molecules and organelles, cell morphogenesis, as well as segregation of the genetic material and separation of the cytoplasm during cell division among eukaryotic organisms. In response to internal and external cues, eukaryotic cells remodel their MT network in a regulated manner in order to assemble physiologically important arrays for cell growth, cell proliferation, or for cells to cope with biotic or abiotic stresses. Nucleation of new MTs is a critical step for MT remodeling. Although many key factors contributing to MT nucleation and organization are well conserved in different kingdoms, the centrosome, representing the most prominent microtubule organizing centers (MTOCs), disappeared during plant evolution as angiosperms lack the structure. Instead, flexible MTOCs may emerge on the plasma membrane, the nuclear envelope, and even organelles depending on types of cells and organisms and/or physiological conditions. MT-dependent MT nucleation is particularly noticeable in plant cells because it accounts for the primary source of MT generation for assembling spindle, phragmoplast, and cortical arrays when the γ-tubulin ring complex is anchored and activated by the augmin complex. It is intriguing what proteins are associated with plant-specific MTOCs and how plant cells activate or inactivate MT nucleation activities in spatiotemporally regulated manners.


Assuntos
Centrossomo/metabolismo , Microtúbulos/metabolismo , Células Vegetais/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
8.
Plant Cell ; 24(5): 2071-85, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22570443

RESUMO

Plant cytokinesis is brought about by the phragmoplast, which contains an antiparallel microtubule (MT) array. The MT-associated protein MAP65-3 acts as an MT-bundling factor that specifically cross-links antiparallel MTs near their plus ends. MAP65 family proteins contain an N-terminal dimerization domain and C-terminal MT interaction domain. Compared with other MAP65 isoforms, MAP65-3 contains an extended C terminus. A MT binding site was discovered in the region between amino acids 496 and 588 and found to be essential for the organization of phragmoplast MTs. The frequent cytokinetic failure caused by loss of MAP65-3 was not rescued by ectopic expression of MAP65-1 under the control of the MAP65-3 promoter, indicating nonoverlapping functions between the two isoforms. In the presence of MAP65-3, however, ectopic MAP65-1 appeared in the phragmoplast midline. We show that MAP65-1 could acquire the function of MAP65-3 when the C terminus of MAP65-3, which contains the MT binding site, was grafted to it. Our results also show that MAP65-1 and MAP65-3 may share redundant functions in MT stabilization. Such a stabilization effect was likely brought about by MT binding and bundling. We conclude that MAP65-3 contains a distinct C-terminal MT binding site with a specific role in cross-linking antiparallel MTs toward their plus ends in the phragmoplast.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Ligação Proteica
9.
Plant Cell ; 24(4): 1494-509, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22505726

RESUMO

Plant cells assemble the bipolar spindle and phragmoplast microtubule (MT) arrays in the absence of the centrosome structure. Our recent findings in Arabidopsis thaliana indicated that AUGMIN subunit3 (AUG3), a homolog of animal dim γ-tubulin 3, plays a critical role in γ-tubulin-dependent MT nucleation and amplification during mitosis. Here, we report the isolation of the entire plant augmin complex that contains eight subunits. Among them, AUG1 to AUG6 share low sequence similarity with their animal counterparts, but AUG7 and AUG8 share homology only with proteins of plant origin. Genetic analyses indicate that the AUG1, AUG2, AUG4, and AUG5 genes are essential, as stable mutations in these genes could only be transmitted to heterozygous plants. The sterile aug7-1 homozygous mutant in which AUG7 expression is significantly reduced exhibited pleiotropic phenotypes of seriously retarded vegetative and reproductive growth. The aug7-1 mutation caused delocalization of γ-tubulin in the mitotic spindle and phragmoplast. Consequently, spindles were abnormally elongated, and their poles failed to converge, as MTs were splayed to discrete positions rendering deformed arrays. In addition, the mutant phragmoplasts often had disorganized MT bundles with uneven edges. We conclude that assembly of MT arrays during plant mitosis depends on the augmin complex, which includes two plant-specific subunits.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Centrossomo/metabolismo , Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Fuso Acromático/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Gametogênese Vegetal/genética , Genes de Plantas/genética , Células Germinativas Vegetais/citologia , Células Germinativas Vegetais/crescimento & desenvolvimento , Meristema/citologia , Meristema/metabolismo , Mitose , Morfogênese , Complexos Multiproteicos/isolamento & purificação , Mutação/genética , Fenótipo , Ligação Proteica , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Transporte Proteico , Especificidade da Espécie , Tubulina (Proteína)/metabolismo
10.
Plant Cell ; 23(8): 2909-23, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21873565

RESUMO

In plant cells, microtubules (MTs) in the cytokinetic apparatus phragmoplast exhibit an antiparallel array and transport Golgi-derived vesicles toward MT plus ends located at or near the division site. By transmission electron microscopy, we observed that certain antiparallel phragmoplast MTs overlapped and were bridged by electron-dense materials in Arabidopsis thaliana. Robust MT polymerization, reported by fluorescently tagged End Binding1c (EB1c), took place in the phragmoplast midline. The engagement of antiparallel MTs in the central spindle and phragmoplast was largely abolished in mutant cells lacking the MT-associated protein, MAP65-3. We found that endogenous MAP65-3 was selectively detected on the middle segments of the central spindle MTs at late anaphase. When MTs exhibited a bipolar appearance with their plus ends placed in the middle, MAP65-3 exclusively decorated the phragmoplast midline. A bacterially expressed MAP65-3 protein was able to establish the interdigitation of MTs in vitro. MAP65-3 interacted with antiparallel microtubules before motor Kinesin-12 did during the establishment of the phragmoplast MT array. Thus, MAP65-3 selectively cross-linked interdigitating MTs (IMTs) to allow antiparallel MTs to be closely engaged in the phragmoplast. Although the presence of IMTs was not essential for vesicle trafficking, they were required for the phragmoplast-specific motors Kinesin-12 and Phragmoplast-Associated Kinesin-Related Protein2 to interact with MT plus ends. In conclusion, we suggest that the phragmoplast contains IMTs and highly dynamic noninterdigitating MTs, which work in concert to bring about cytokinesis in plant cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Citocinese/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/fisiologia , Animais , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Cinesinas/genética , Cinesinas/metabolismo , Camundongos , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/ultraestrutura , Mutação , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Transporte Proteico , Coelhos , Proteínas Recombinantes de Fusão , Plântula/genética , Plântula/fisiologia , Plântula/ultraestrutura , Fuso Acromático/fisiologia
11.
Plant Cell ; 23(7): 2606-18, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21750235

RESUMO

In higher plant cells, microtubules (MTs) are nucleated and organized in a centrosome-independent manner. It is unclear whether augmin-dependent mechanisms underlie spindle MT organization in plant cells as they do in animal cells. When AUGMIN subunit3 (AUG3), which encodes a homolog of animal dim γ-tubulin 3/human augmin-like complex, subunit 3, was disrupted in Arabidopsis thaliana, gametogenesis frequently failed due to defects in cell division. Compared with the control microspores, which formed bipolar spindles at the cell periphery, the mutant cells often formed peripheral half spindles that only attached to condensed chromosomes or formed elongated spindles with unfocused interior poles. In addition, defective cells exhibited disorganized phragmoplast MT arrays, which caused aborted cytokinesis. The resulting pollen grains were either shrunken or contained two nuclei in an undivided cytoplasm. AUG3 was localized along MTs in the spindle and phragmoplast, and its signal was pronounced in anaphase spindle poles. An AUG3-green fluorescent protein fusion exhibited a dynamic distribution pattern, similar to that of the γ-tubulin complex protein2. When AUG3 was enriched from seedlings by affinity chromatography, AUG1 was detected by immunoblotting, suggesting an augmin-like complex was present in vivo. We conclude that augmin plays a critical role in MT organization during plant cell division.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Teste de Complementação Genética , Humanos , Meristema/citologia , Meristema/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Mitose/fisiologia , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Óvulo Vegetal/citologia , Óvulo Vegetal/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Pólen/citologia , Pólen/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fuso Acromático/patologia , Fuso Acromático/ultraestrutura , Tubulina (Proteína)/metabolismo
12.
Dev Cell ; 59(17): 2333-2346.e6, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38848716

RESUMO

In plant vegetative tissues, cell division employs a mitotic microtubule array called the preprophase band (PPB) that marks the cortical division site. This transient cytoskeletal array imprints the spatial information to be read by the cytokinetic phragmoplast at later stages of mitotic cell division. In Arabidopsis thaliana, we discovered that the PPB recruited the Myosin XI motor MYA1/Myo11F to the cortical division site, where it joined microtubule-associated proteins and motors to form a ring of prominent cytoskeletal assemblies that received the expanding phragmoplast. Such a myosin localization pattern at the cortical division site was dependent on the POK1/2 Kinesin-12 motors. This regulatory function of MYA1/Myo11F in phragmoplast guidance was dependent on intact actin filaments. The discovery of these cytoskeletal motor assemblies pinpoints a mechanism underlying how two dynamic cytoskeletal networks work in concert to govern PPB-dependent division plane orientation in flowering plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citocinese , Microtúbulos , Miosinas , Arabidopsis/metabolismo , Arabidopsis/citologia , Citocinese/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Microtúbulos/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Divisão Celular , Proteínas Associadas aos Microtúbulos/metabolismo , Cinesinas/metabolismo , Mitose , Citoesqueleto/metabolismo
13.
Curr Biol ; 34(16): 3747-3762.e6, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39163829

RESUMO

The acentrosomal spindle apparatus has kinetochore fibers organized and converged toward opposite poles; however, mechanisms underlying the organization of these microtubule fibers into an orchestrated bipolar array were largely unknown. Kinesin-14D is one of the four classes of Kinesin-14 motors that are conserved from green algae to flowering plants. In Arabidopsis thaliana, three Kinesin-14D members displayed distinct cell cycle-dependent localization patterns on spindle microtubules in mitosis. Notably, Kinesin-14D1 was enriched on the midzone microtubules of prophase and mitotic spindles and later persisted in the spindle and phragmoplast midzones. The kinesin-14d1 mutant had kinetochore fibers disengaged from each other during mitosis and exhibited hypersensitivity to the microtubule-depolymerizing herbicide oryzalin. Oryzalin-treated kinesin-14d1 mutant cells had kinetochore fibers tangled together in collapsed spindle microtubule arrays. Kinesin-14D1, unlike other Kinesin-14 motors, showed slow microtubule plus end-directed motility, and its localization and function were dependent on its motor activity and the novel malectin-like domain. Our findings revealed a Kinesin-14D1-dependent mechanism that employs interpolar microtubules to regulate the organization of kinetochore fibers for acentrosomal spindle morphogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cinesinas , Microtúbulos , Fuso Acromático , Arabidopsis/metabolismo , Arabidopsis/genética , Cinesinas/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fuso Acromático/metabolismo , Mitose , Morfogênese , Cinetocoros/metabolismo , Dinitrobenzenos/farmacologia , Sulfanilamidas/farmacologia
14.
Plant Cell ; 22(1): 191-204, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20118227

RESUMO

Microtubule (MT) nucleation and organization depend on the evolutionarily conserved protein gamma -tubulin, which forms a complex with GCP2-GCP6 (GCP for gamma -Tubulin Complex Protein). To date, it is still unclear how GCP4-GCP6 (the non-core GCPs) may be involved in acentrosomal MT nucleation in plant cells. We found that GCP4 was associated with gamma -tubulin in vivo in Arabidopsis thaliana. When GCP4 expression was repressed by an artificial microRNA, transgenic plants exhibited phenotypes of dwarfism and reduced organ size. In mitotic cells, it was observed that the gamma -tubulin signal associated with the mitotic spindle, and the phragmoplast was depleted when GCP4 was downregulated. Consequently, MTs failed to converge at unified spindle poles, and the bipolar phragmoplast MT array frequently had discrete bundles with extended minus ends, resulting in failed cytokinesis as reflected by cell wall stubs in leaf epidermal cells. In addition, cortical MTs in swollen guard cells and pavement cells of the leaf epidermis became hyperparallel and bundled, which was likely caused by frequent MT nucleation with shallow angles on the wall of extant MTs. Therefore, our results support the notion that GCP4 is an indispensable component for the function of gamma -tubulin in MT nucleation and organization in plant cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sequência de Bases , Citocinese , MicroRNAs/genética , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética , Fuso Acromático/metabolismo , Tubulina (Proteína)/genética
15.
Methods Mol Biol ; 2604: 103-111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36773228

RESUMO

The production of tissues and organs in plants is brought about by mitotic cell divisions, starting from the zygote. Successful mitosis and cytokinesis harness the functional input of proteins that are expressed in cell cycle-dependent manners to regulate cytoskeletal reorganization and intracellular motility. Fluorescence microscopic assays of mitotically active proteins have been dependent on time-consuming transformation experiments in a host plant or cultured cells. To facilitate the detection and observation of cell cycle-dependent localization and dynamics of plant proteins, we demonstrate, in this chapter, a transiently induced cell division system in Nicotiana benthamiana, named the cell division-enabled leaf system (CDELS). Plasmid constructs which express the D-type cyclin along with a fluorescent fusion protein(s) of interest are delivered to the leaves of N. benthamiana by agrobacterial infiltration. Ectopic expression of cyclin D induces leaf epidermal cells to re-enter mitosis and subsequently cytokinesis, allowing the dynamic localization of fluorescent fusion protein(s) to be observed throughout the course of mitotic cell division using live-cell fluorescence microscopy. This effective approach not only allows one to detect mitotic activities of novel proteins but also record their dynamics and relationship with others during mitosis and cytokinesis in a greatly shortened period of time.


Assuntos
Mitose , Nicotiana , Nicotiana/metabolismo , Citocinese/genética , Ciclo Celular , Folhas de Planta/genética , Folhas de Planta/metabolismo
16.
Annu Rev Plant Biol ; 73: 227-254, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595291

RESUMO

In contrast to well-studied fungal and animal cells, plant cells assemble bipolar spindles that exhibit a great deal of plasticity in the absence of structurally defined microtubule-organizing centers like the centrosome. While plants employ some evolutionarily conserved proteins to regulate spindle morphogenesis and remodeling, many essential spindle assembly factors found in vertebrates are either missing or not required for producing the plant bipolar microtubule array. Plants also produce proteins distantly related to their fungal and animal counterparts to regulate critical events such as the spindle assembly checkpoint. Plant spindle assembly initiates with microtubule nucleation on the nuclear envelope followed by bipolarization into the prophase spindle. After nuclear envelope breakdown, kinetochore fibers are assembled and unified into the spindle apparatus with convergent poles. Of note, compared to fungal and animal systems, relatively little is known about how plant cells remodel the spindle microtubule array during anaphase. Uncovering mitotic functions of novel proteins for spindle assembly in plants will illuminate both common and divergent mechanisms employed by different eukaryotic organisms to segregate genetic materials.


Assuntos
Fuso Acromático , Tubulina (Proteína) , Animais , Centrossomo/metabolismo , Microtúbulos/metabolismo , Mitose , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
17.
Front Cell Dev Biol ; 10: 949345, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982853

RESUMO

Plant cells form acentrosomal spindles with microtubules (MTs) converged toward two structurally undefined poles by employing MT minus end-directed Kinesin-14 motors. To date, it is unclear whether the convergent bipolar MT array assumes unified poles in plant spindles, and if so, how such a goal is achieved. Among six classes of Kinesin-14 motors in Arabidopsis thaliana, the Kinesin-14A motors ATK1 (KatA) and ATK5 share the essential function in spindle morphogenesis. To understand how the two functionally redundant Kinesin-14A motors contributed to the spindle assembly, we had ATK1-GFP and ATK5-GFP fusion proteins expressed in their corresponding null mutants and found that they were functionally comparable to their native forms. Although ATK1 was a nuclear protein and ATK5 cytoplasmic prior to nuclear envelop breakdown, at later mitotic stages, the two motors shared similar localization patterns of uniform association with both spindle and phragmoplast MTs. We found that ATK1 and ATK5 were rapidly concentrated toward unified polar foci when cells were under hyperosmotic conditions. Concomitantly, spindle poles became perfectly focused as if there were centrosome-like MT-organizing centers where ATK1 and ATK5 were highly enriched and at which kinetochore fibers pointed. The separation of ATK1/ATK5-highlighted MTs from those of kinetochore fibers suggested that the motors translocated interpolar MTs. Our protein purification and live-cell imaging results showed that ATK1 and ATK5 are associated with each other in vivo. The stress-induced spindle pole convergence was also accompanied by poleward accumulation of the MT nucleator γ-tubulin. These results led to the conclusion that the two Kinesin-14A motors formed oligomeric motor complexes that drove MT translocation toward the spindle pole to establish acentrosomal spindles with convergent poles.

18.
Ann Bot ; 103(3): 387-402, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19106179

RESUMO

BACKGROUND: Microtubules (MTs) are assembled by heterodimers of alpha- and beta-tubulins, which provide tracks for directional transport and frameworks for the spindle apparatus and the phragmoplast. MT nucleation and dynamics are regulated by components such as the gamma-tubulin complex which are conserved among eukaryotes, and other components which are unique to plants. Following remarkable progress made in the model plant Arabidopsis thaliana toward revealing key components regulating MT activities, the completed rice (Oryza sativa) genome has prompted a survey of the MT cytoskeleton in this important crop as a model for monocots. SCOPE: The rice genome contains three alpha-tubulin genes, eight beta-tubulin genes and a single gamma-tubulin gene. A functional gamma-tubulin ring complex is expected to form in rice as genes encoding all components of the complex are present. Among proteins that interact with MTs, compared with A. thaliana, rice has more genes encoding some members such as the MAP65/Ase1p/PRC1 family, but fewer for the motor kinesins, the end-binding protein EB1 and the mitotic kinase Aurora. Although most known MT-interacting factors have apparent orthologues in rice, no orthologues of arabidopsis RIC1 and MAP18 have been identified in rice. Among all proteins surveyed here, only a few have had their functions characterized by genetic means in rice. Elucidating functions of proteins of the rice MT cytoskeleton, aided by recent technical advances made in this model monocot, will greatly advance our knowledge of how monocots employ their MTs to regulate their growth and form.


Assuntos
Genoma de Planta/genética , Microtúbulos/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Oryza/enzimologia , Ligação Proteica , Especificidade da Espécie
19.
Cell Death Dis ; 10(12): 871, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740667

RESUMO

Cystic kidney disease is the progressive development of multiple fluid-filled cysts that may severely compromise kidney functions and lead to renal failure. TNS1 (tensin-1) knockout mice develop cystic kidneys and die from renal failure. Here, we have established TNS1-knockout MDCK cells and applied 3D culture system to investigate the mechanism leading to cyst formation. Unlike wild-type MDCK cells, which form cysts with a single lumen, TNS1-knockout cysts contain multiple lumens and upregulated Mek/Erk activities. The multiple lumen phenotype and Mek/Erk hyperactivities are rescued by re-expression of wild-type TNS1 but not the TNS1 mutant lacking a fragment essential for its cell-cell junction localization. Furthermore, Mek inhibitor treatments restore the multiple lumens back to single lumen cysts. Mek/Erk hyperactivities are also detected in TNS1-knockout mouse kidneys. Treatment with the Mek inhibitor trametinib significantly reduces the levels of interstitial infiltrates, fibrosis and dilated tubules in TNS1-knockout kidneys. These studies establish a critical role of subcellular localization of TNS1 in suppressing Mek/Erk signaling and maintaining lumenogenesis, and provide potential therapeutic strategies by targeting the Mek/Erk pathway for cystic kidney diseases.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Doenças Renais Policísticas/metabolismo , Tensinas/metabolismo , Animais , Proliferação de Células , Camundongos , Camundongos Knockout , Transfecção
20.
Mol Biol Cell ; 16(2): 811-23, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15574882

RESUMO

Members of the kinesin superfamily are microtubule-based motor proteins that transport molecules/organelles along microtubules. We have identified similar internal motor kinesins, Kinesin-13A, from the cotton Gossypium hirsutum and Arabidopsis thaliana. Their motor domains share high degree of similarity with those of internal motor kinesins of animals and protists in the MCAK/Kinesin13 subfamily. However, no significant sequence similarities were detected in sequences outside the motor domain. In Arabidopsis plants carrying the T-DNA knockout kinesin-13a-1 and kinesin-13a-2 mutations at the Kinesin-13A locus, >70% leaf trichomes had four branches, whereas wild-type trichomes had three. Immunofluorescent results showed that AtKinesin-13A and GhKinesin-13A localized to entire Golgi stacks. In both wild-type and kinesin-13a mutant cells, the Golgi stacks were frequently associated with microtubules and with actin microfilaments. Aggregation/clustering of Golgi stacks was often observed in the kinesin-13a mutant trichomes and other epidermal cells. This suggested that the distribution of the Golgi apparatus in cell cortex might require microtubules and Kinesin-13A, and the organization of Golgi stacks could play a regulatory role in trichome morphogenesis. Our results also indicate that plant kinesins in the MCAK/Kinesin-13 subfamily have evolved to take on different tasks than their animal counterparts.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Complexo de Golgi/metabolismo , Cinesinas/metabolismo , Morfogênese , Folhas de Planta/crescimento & desenvolvimento , Actinas/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/química , Fluoresceína-5-Isotiocianato , Técnica Indireta de Fluorescência para Anticorpo , Corantes Fluorescentes , Complexo de Golgi/ultraestrutura , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/ultraestrutura , Processamento de Imagem Assistida por Computador , Cinesinas/biossíntese , Cinesinas/química , Cinesinas/genética , Cinesinas/ultraestrutura , Microscopia Confocal , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Biológicos , Mutagênese Insercional , Mutação , Filogenia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas/ultraestrutura , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Xantenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA