RESUMO
The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.
Assuntos
Competição entre as Células , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Esterases/metabolismo , Genes APC , Mutação , Adenoma/genética , Adenoma/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Competição entre as Células/genética , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Meios de Cultivo Condicionados , Progressão da Doença , Esterases/antagonistas & inibidores , Esterases/genética , Feminino , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organoides/citologia , Organoides/metabolismo , Organoides/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização WntRESUMO
Due to their increased cancer risk, patients with longstanding inflammatory bowel disease are offered endoscopic surveillance with concomitant histopathologic assessments, aimed at identifying dysplasia as a precursor lesion of colitis-associated colorectal cancer. However, this strategy is beset with difficulties and limitations. Recently, a novel classification criterion for colitis-associated low-grade dysplasia has been proposed, and an association between nonconventional dysplasia and progression was reported, suggesting the possibility of histology-based stratification of patients with colitis-associated lesions. Here, a cohort of colitis-associated lesions was assessed by a panel of 6 experienced pathologists to test the applicability of the published classification criteria and try and validate the association between nonconventional dysplasia and progression. While confirming the presence of different morphologic patterns of colitis-associated dysplasia, the study demonstrated difficulties concerning diagnostic reproducibility between pathologists and was unable to validate the association of nonconventional dysplasia with cancer progression. Our study highlights the overall difficulty of using histologic assessment of precursor lesions for cancer risk prediction in inflammatory bowel disease patients and suggests the need for a different diagnostic strategy that can objectively identify high-risk phenotypes.
Assuntos
Colite Ulcerativa , Colite , Neoplasias Colorretais , Doenças Inflamatórias Intestinais , Neoplasias , Humanos , Reprodutibilidade dos Testes , Colite/complicações , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/patologia , Colonoscopia , Hiperplasia , Neoplasias Colorretais/patologia , Colite Ulcerativa/complicações , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/patologiaRESUMO
BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) play an important role in colorectal cancer (CRC) progression and predict poor prognosis in CRC patients. However, the cellular origins of CAFs remain unknown, making it challenging to therapeutically target these cells. Here, we aimed to identify the origins and contribution of colorectal CAFs associated with poor prognosis. METHODS: To elucidate CAF origins, we used a colitis-associated CRC mouse model in 5 different fate-mapping mouse lines with 5-bromodeoxyuridine dosing. RNA sequencing of fluorescence-activated cell sorting-purified CRC CAFs was performed to identify a potential therapeutic target in CAFs. To examine the prognostic significance of the stromal target, CRC patient RNA sequencing data and tissue microarray were used. CRC organoids were injected into the colons of knockout mice to assess the mechanism by which the stromal gene contributes to colorectal tumorigenesis. RESULTS: Our lineage-tracing studies revealed that in CRC, many ACTA2+ CAFs emerge through proliferation from intestinal pericryptal leptin receptor (Lepr)+ cells. These Lepr-lineage CAFs, in turn, express melanoma cell adhesion molecule (MCAM), a CRC stroma-specific marker that we identified with the use of RNA sequencing. High MCAM expression induced by transforming growth factor ß was inversely associated with patient survival in human CRC. In mice, stromal Mcam knockout attenuated orthotopically injected colorectal tumoroid growth and improved survival through decreased tumor-associated macrophage recruitment. Mechanistically, fibroblast MCAM interacted with interleukin-1 receptor 1 to augment nuclear factor κB-IL34/CCL8 signaling that promotes macrophage chemotaxis. CONCLUSIONS: In colorectal carcinogenesis, pericryptal Lepr-lineage cells proliferate to generate MCAM+ CAFs that shape the tumor-promoting immune microenvironment. Preventing the expansion/differentiation of Lepr-lineage CAFs or inhibiting MCAM activity could be effective therapeutic approaches for CRC.
Assuntos
Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/fisiologia , Carcinogênese/patologia , Linhagem da Célula , Neoplasias Colorretais/patologia , Células-Tronco Mesenquimais/fisiologia , Actinas/genética , Actinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígeno CD146/genética , Antígeno CD146/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Diferenciação Celular , Proliferação de Células , Neoplasias Colorretais/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Mucosa Intestinal/patologia , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Organoides/patologia , Organoides/fisiologia , Prognóstico , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Análise de Sequência de RNA , Taxa de Sobrevida , Microambiente TumoralRESUMO
The intestinal epithelium is a tissue with high cell turnover, supported by adult intestinal stem cells. Intestinal homeostasis is underpinned by crypt basal columnar stem cells, marked by expression of the LGR5 gene. However, recent research has demonstrated considerable stem cell plasticity following injury, with dedifferentiation of a range of other intestinal cell populations, induced by a permissive microenvironment in the regenerating mucosa. The regulation of this profound adaptive cell reprogramming response is the subject of current research. There is a demonstrable contribution from disruption of key homeostatic signaling pathways such as wingless-related integration site and bone morphogenetic protein, and an emerging signaling hub role for the mechanoreceptor transducers Yes-associated protein 1/transcriptional coactivator with PDZ-binding motif, negatively regulated by the Hippo pathway. However, a number of outstanding questions remain, including a need to understand how tissues sense damage, and how pathways intersect to mediate dynamic changes in the stem cell population. Better understanding of these pathways, associated functional redundancies, and how they may be both enhanced for recovery of inflammatory diseases, and co-opted in neoplasia development, may have significant clinical implications, and could lead to development of more targeted molecular therapies which target individual stem or stem-like cell populations.
Assuntos
Plasticidade Celular , Células-Tronco , Adulto , Carcinogênese/metabolismo , Humanos , Mucosa Intestinal , Intestinos , Microambiente TumoralRESUMO
OBJECTIVE: Stroma-rich tumours represent a poor prognostic subtype in stage II/III colon cancer (CC), with high relapse rates and limited response to standard adjuvant chemotherapy. DESIGN: To address the lack of efficacious therapeutic options for patients with stroma-rich CC, we stratified our human tumour cohorts according to stromal content, enabling identification of the biology underpinning relapse and potential therapeutic vulnerabilities specifically within stroma-rich tumours that could be exploited clinically. Following human tumour-based discovery and independent clinical validation, we use a series of in vitro and stroma-rich in vivo models to test and validate the therapeutic potential of elevating the biology associated with reduced relapse in human tumours. RESULTS: By performing our analyses specifically within the stroma-rich/high-fibroblast (HiFi) subtype of CC, we identify and validate the clinical value of a HiFi-specific prognostic signature (HPS), which stratifies tumours based on STAT1-related signalling (High-HPS v Low-HPS=HR 0.093, CI 0.019 to 0.466). Using in silico, in vitro and in vivo models, we demonstrate that the HPS is associated with antigen processing and presentation within discrete immune lineages in stroma-rich CC, downstream of double-stranded RNA and viral response signalling. Treatment with the TLR3 agonist poly(I:C) elevated the HPS signalling and antigen processing phenotype across in vitro and in vivo models. In an in vivo model of stroma-rich CC, poly(I:C) treatment significantly increased systemic cytotoxic T cell activity (p<0.05) and reduced liver metastases (p<0.0002). CONCLUSION: This study reveals new biological insight that offers a novel therapeutic option to reduce relapse rates in patients with the worst prognosis CC.
Assuntos
Biomarcadores Tumorais , Neoplasias do Colo , Humanos , Biomarcadores Tumorais/genética , Células Estromais/patologia , Recidiva Local de Neoplasia/prevenção & controle , Recidiva Local de Neoplasia/patologia , Neoplasias do Colo/patologia , PrognósticoRESUMO
BACKGROUND: RSPO fusions that lead to WNT pathway activation are potential therapeutic targets in colorectal cancer (CRC), but their clinicopathological significance remains unclear. METHODS: We screened 1019 CRCs for RSPO fusions using multiplex reverse transcription-PCR. The RSPO fusion-positive tumours were subjected to whole-exome sequencing (WES). RESULTS: Our analysis identified 29 CRCs with RSPO fusions (2.8%), consisting of five with an EIF3E-RSPO2 fusion and 24 with PTPRK-RSPO3 fusions. The patients were 17 women and 12 men. Thirteen tumours (45%) were right-sided. Histologically, approximately half of the tumours (13/29, 45%) had a focal or extensive mucinous component that was significantly more frequent than the RSPO fusion-negative tumours (13%; P = 8.1 × 10-7). Four tumours (14%) were mismatch repair-deficient. WES identified KRAS, BRAF, and NRAS mutations in a total of 27 tumours (93%). In contrast, pathogenic mutations in major WNT pathway genes, such as APC, CTNNB1 and RNF43, were absent. RSPO fusion status did not have a statistically significant influence on the overall or recurrence-free survival. These clinicopathological and genetic features were also confirmed in a pooled analysis of previous studies. CONCLUSION: RSPO fusion-positive CRCs constitute a rare subgroup of CRCs with several characteristic clinicopathological and genetic features.
Assuntos
Neoplasias Colorretais , Trombospondinas , Feminino , Humanos , Masculino , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fusão Gênica , Mutação , Trombospondinas/genética , Trombospondinas/metabolismo , Via de Sinalização Wnt/genéticaRESUMO
BACKGROUND & AIMS: Barrett's epithelium measurement using widely accepted Prague C&M classification is highly operator dependent. We propose a novel methodology for measuring this risk score automatically. The method also enables quantification of the area of Barrett's epithelium (BEA) and islands, which was not possible before. Furthermore, it allows 3-dimensional (3D) reconstruction of the esophageal surface, enabling interactive 3D visualization. We aimed to assess the accuracy of the proposed artificial intelligence system on both phantom and endoscopic patient data. METHODS: Using advanced deep learning, a depth estimator network is used to predict endoscope camera distance from the gastric folds. By segmenting BEA and gastroesophageal junction and projecting them to the estimated mm distances, we measure C&M scores including the BEA. The derived endoscopy artificial intelligence system was tested on a purpose-built 3D printed esophagus phantom with varying BEAs and on 194 high-definition videos from 131 patients with C&M values scored by expert endoscopists. RESULTS: Endoscopic phantom video data demonstrated a 97.2% accuracy with a marginal ± 0.9 mm average deviation for C&M and island measurements, while for BEA we achieved 98.4% accuracy with only ±0.4 cm2 average deviation compared with ground-truth. On patient data, the C&M measurements provided by our system concurred with expert scores with marginal overall relative error (mean difference) of 8% (3.6 mm) and 7% (2.8 mm) for C and M scores, respectively. CONCLUSIONS: The proposed methodology automatically extracts Prague C&M scores with high accuracy. Quantification and 3D reconstruction of the entire Barrett's area provides new opportunities for risk stratification and assessment of therapy response.
Assuntos
Esôfago de Barrett/patologia , Aprendizado Profundo , Mucosa Esofágica/patologia , Junção Esofagogástrica/patologia , Esofagoscopia , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Idoso , Automação , Esôfago de Barrett/classificação , Esôfago de Barrett/terapia , Progressão da Doença , Feminino , Humanos , Masculino , Projetos Piloto , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Resultado do TratamentoRESUMO
BACKGROUND & AIMS: In homeostasis, intestinal cell fate is controlled by balanced gradients of morphogen signaling. The bone morphogenetic protein (BMP) pathway has a physiological, prodifferentiation role, predominantly inferred through previous experimental pathway inactivation. Intestinal regeneration is underpinned by dedifferentiation and cell plasticity, but the signaling pathways that regulate this adaptive reprogramming are not well understood. We assessed the BMP signaling landscape and investigated the impact and therapeutic potential of pathway manipulation in homeostasis and regeneration. METHODS: A novel mouse model was generated to assess the effect of the autocrine Bmp4 ligand on individual secretory cell fate. We spatiotemporally mapped BMP signaling in mouse and human regenerating intestine. Transgenic models were used to explore the functional impact of pathway manipulation on stem cell fate and intestinal regeneration. RESULTS: In homeostasis, ligand exposure reduced proliferation, expedited terminal differentiation, abrogated secretory cell survival, and prevented dedifferentiation. After ulceration, physiological attenuation of BMP signaling arose through upregulation of the secreted antagonist Grem1 from topographically distinct populations of fibroblasts. Concomitant expression supported functional compensation after Grem1 deletion from tissue-resident cells. BMP pathway manipulation showed that antagonist-mediated BMP attenuation was obligatory but functionally submaximal, because regeneration was impaired or enhanced by epithelial overexpression of Bmp4 or Grem1, respectively. Mechanistically, Bmp4 abrogated regenerative stem cell reprogramming despite a convergent impact of YAP/TAZ on cell fate in remodeled wounds. CONCLUSIONS: BMP signaling prevents epithelial dedifferentiation, and pathway attenuation through stromal Grem1 upregulation was required for adaptive reprogramming in intestinal regeneration. This intercompartmental antagonism was functionally submaximal, raising the possibility of therapeutic pathway manipulation in inflammatory bowel disease.
Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Colite/metabolismo , Colo/metabolismo , Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Lesões Experimentais por Radiação/metabolismo , Regeneração , Animais , Comunicação Autócrina , Proteína Morfogenética Óssea 4/genética , Diferenciação Celular , Proliferação de Células , Colite/genética , Colite/patologia , Colo/patologia , Células Epiteliais/patologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mucosa Intestinal/patologia , Intestino Delgado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/patologia , Reepitelização , Transdução de SinaisRESUMO
BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs), key constituents of the tumor microenvironment, either promote or restrain tumor growth. Attempts to therapeutically target CAFs have been hampered by our incomplete understanding of these functionally heterogeneous cells. Key growth factors in the intestinal epithelial niche, bone morphogenetic proteins (BMPs), also play a critical role in colorectal cancer (CRC) progression. However, the crucial proteins regulating stromal BMP balance and the potential application of BMP signaling to manage CRC remain largely unexplored. METHODS: Using human CRC RNA expression data, we identified CAF-specific factors involved in BMP signaling, then verified and characterized their expression in the CRC stroma by in situ hybridization. CRC tumoroids and a mouse model of CRC hepatic metastasis were used to test approaches to modify BMP signaling and treat CRC. RESULTS: We identified Grem1 and Islr as CAF-specific genes involved in BMP signaling. Functionally, GREM1 and ISLR acted to inhibit and promote BMP signaling, respectively. Grem1 and Islr marked distinct fibroblast subpopulations and were differentially regulated by transforming growth factor ß and FOXL1, providing an underlying mechanism to explain fibroblast biological dichotomy. In patients with CRC, high GREM1 and ISLR expression levels were associated with poor and favorable survival, respectively. A GREM1-neutralizing antibody or fibroblast Islr overexpression reduced CRC tumoroid growth and promoted Lgr5+ intestinal stem cell differentiation. Finally, adeno-associated virus 8 (AAV8)-mediated delivery of Islr to hepatocytes increased BMP signaling and improved survival in our mouse model of hepatic metastasis. CONCLUSIONS: Stromal BMP signaling predicts and modifies CRC progression and survival, and it can be therapeutically targeted by novel AAV-directed gene delivery to the liver.
Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Colorretais/patologia , Imunoglobulinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Hepáticas/secundário , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Fibroblastos Associados a Câncer/metabolismo , Carcinogênese/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/mortalidade , Progressão da Doença , Feminino , Hepatócitos/metabolismo , Humanos , Imunoglobulinas/genética , Estimativa de Kaplan-Meier , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Transdução de Sinais , Microambiente Tumoral , Regulação para Cima , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND AND AIM: Serrated polyposis syndrome (SPS) is now known to be the commonest polyposis syndrome. Previous analyses for germline variants have shown no consistent positive findings. To exclude other polyposis syndromes, 2019 British Society of Gastroenterology (BSG) guidelines advise gene panel testing if the patient is under 50 years, there are multiple affected individuals within a family, or there is dysplasia within any of the polyps. METHODS: A database of SPS patients was established at the Oxford University Hospitals NHS Foundation Trust. Patients were referred for genetic assessment based on personal and family history and patient preference. The majority were tested for a hereditary colorectal cancer panel including MUTYH, APC, PTEN, SMAD4, BMPR1A, STK11, NTLH1, POLD1, POLE, GREM1 (40-kb duplication), PMS2, and Lynch syndrome mismatch repair genes. RESULTS: One hundred and seventy-three patients were diagnosed with SPS based on World Health Organization 2019 criteria between February 2010 and December 2020. The mean age of diagnosis was 54.2 ± 16.8 years. Seventy-three patients underwent genetic testing and 15/73 (20.5%) were found to have germline variants, of which 7/73 (9.6%) had a pathogenic variant (MUTYH n = 2, SMAD4 n = 1, CHEK2 n = 2, POLD1 n = 1, and RNF43 n = 1). Only 60% (9/15) of these patients would have been recommended for gene panel testing according to current BSG guidelines. CONCLUSIONS: A total of 20.5% of SPS patients tested were affected by heterozygous germline variants, including previously unreported associations with CHEK2 and POLD1. This led to a change in management in seven patients (9.6%). Current recommendations may miss SPS associated with germline variants, which is more common than previously anticipated.
Assuntos
Polipose Adenomatosa do Colo , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Polipose Adenomatosa do Colo/genética , Adulto , Idoso , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Testes Genéticos , Células Germinativas , Mutação em Linhagem Germinativa , Humanos , Pessoa de Meia-Idade , SíndromeRESUMO
OBJECTIVE: Complex phenotypes captured on histological slides represent the biological processes at play in individual cancers, but the link to underlying molecular classification has not been clarified or systematised. In colorectal cancer (CRC), histological grading is a poor predictor of disease progression, and consensus molecular subtypes (CMSs) cannot be distinguished without gene expression profiling. We hypothesise that image analysis is a cost-effective tool to associate complex features of tissue organisation with molecular and outcome data and to resolve unclassifiable or heterogeneous cases. In this study, we present an image-based approach to predict CRC CMS from standard H&E sections using deep learning. DESIGN: Training and evaluation of a neural network were performed using a total of n=1206 tissue sections with comprehensive multi-omic data from three independent datasets (training on FOCUS trial, n=278 patients; test on rectal cancer biopsies, GRAMPIAN cohort, n=144 patients; and The Cancer Genome Atlas (TCGA), n=430 patients). Ground truth CMS calls were ascertained by matching random forest and single sample predictions from CMS classifier. RESULTS: Image-based CMS (imCMS) accurately classified slides in unseen datasets from TCGA (n=431 slides, AUC)=0.84) and rectal cancer biopsies (n=265 slides, AUC=0.85). imCMS spatially resolved intratumoural heterogeneity and provided secondary calls correlating with bioinformatic prediction from molecular data. imCMS classified samples previously unclassifiable by RNA expression profiling, reproduced the expected correlations with genomic and epigenetic alterations and showed similar prognostic associations as transcriptomic CMS. CONCLUSION: This study shows that a prediction of RNA expression classifiers can be made from H&E images, opening the door to simple, cheap and reliable biological stratification within routine workflows.
Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Aprendizado Profundo , Regulação Neoplásica da Expressão Gênica/genética , RNA/genética , Biomarcadores Tumorais/genética , Biópsia , Consenso , Conjuntos de Dados como Assunto , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Gradação de Tumores , Fenótipo , Valor Preditivo dos Testes , PrognósticoRESUMO
AIMS: After local excision of early rectal cancer, definitive lymph node status is not available. An alternative means for accurate assessment of recurrence risk is required to determine the most appropriate subsequent management. Currently used measures are suboptimal. We assess three measures of tumour stromal content to determine their predictive value after local excision in a well-characterised cohort of rectal cancer patients without prior radiotherapy. METHODS AND RESULTS: A total of 143 patients were included. Haematoxylin and eosin (H&E) sections were scanned for (i) deep neural network (DNN, a machine-learning algorithm) tumour segmentation into compartments including desmoplastic stroma and inflamed stroma; and (ii) digital assessment of tumour stromal fraction (TSR) and optical DNA ploidy analysis. 3' mRNA sequencing was performed to obtain gene expression data from which stromal and immune scores were calculated using the ESTIMATE method. Full results were available for 139 samples and compared with disease-free survival. All three methods were prognostic. Most strongly predictive was a DNN-determined ratio of desmoplastic to inflamed stroma >5.41 (P < 0.0001). A ratio of ESTIMATE stromal to immune score <1.19 was also predictive of disease-free survival (P = 0.00051), as was stromal fraction >36.5% (P = 0.037). CONCLUSIONS: The DNN-determined ratio of desmoplastic to inflamed ratio is a novel and powerful predictor of disease recurrence in locally excised early rectal cancer. It can be assessed on a single H&E section, so could be applied in routine clinical practice to improve the prognostic information available to patients and clinicians to inform the decision concerning further management.
Assuntos
Recidiva Local de Neoplasia/patologia , Neoplasias Retais/patologia , Células Estromais/patologia , Microambiente Tumoral , Idoso , Estudos de Coortes , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Neoplasias Retais/cirurgia , Estudos RetrospectivosRESUMO
Highly conserved, complex and interacting morphogen signalling pathways regulate adult stem cells and control cell fate determination across numerous different organs. In homeostasis, the bone morphogenetic protein (BMP) pathway predominantly promotes cell differentiation. Localised expression of ligand sequestering BMP antagonists, such as Gremlin 1 (Grem1), necessarily restricts BMP activity within the stem cell niche and facilitate stemness and self-renewal. In a new paper, Rowan, Jahns et al show that acute deletion of Grem1 in adult mice, using a ubiquitous ROSA26-Cre recombinase, induced not only severe intestinal enteropathy but also hypocellular bone marrow failure suggestive of stem cell niche collapse in both tissues. Grem1 has an increasingly recognised pleiotrophic role in a number of organ systems and is implicated across a wide range of disease states. Although the importance of Grem1 in intestinal stem cell regulation has been well described, a putative function in haematopoietic niche maintenance is novel and requires further exploration. Moreover, the complex and context-specific regulation of Grem1, among a host of functionally convergent but structurally disparate BMP antagonists, warrants further research as we learn more about the pathogenic consequences of deranged expression of this small, but important, protein. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Assuntos
Proteínas Morfogenéticas Ósseas , Transdução de Sinais , Animais , Diferenciação Celular , Camundongos , Nicho de Células-TroncoRESUMO
OBJECTIVE: Pathological Wnt pathway activation is a conserved hallmark of colorectal cancer. Wnt-activating mutations can be divided into: i) ligand-independent (LI) alterations in intracellular signal transduction proteins (Adenomatous polyposis coli, ß-catenin), causing constitutive pathway activation and ii) ligand-dependent (LD) mutations affecting the synergistic R-Spondin axis (RNF43, RSPO-fusions) acting through amplification of endogenous Wnt signal transmembrane transduction. Our aim was to exploit differential Wnt target gene expression to generate a mutation-agnostic biomarker for LD tumours. DESIGN: We undertook harmonised multi-omic analysis of discovery (n=684) and validation cohorts (n=578) of colorectal tumours collated from publicly available data and the Stratification in Colorectal Cancer Consortium. We used mutation data to establish molecular ground truth and subdivide lesions into LI/LD tumour subsets. We contrasted transcriptional, methylation, morphological and clinical characteristics between groups. RESULTS: Wnt disrupting mutations were mutually exclusive. Desmoplastic stromal upregulation of RSPO may compensate for absence of epithelial mutation in a subset of stromal-rich tumours. Key Wnt negative regulator genes were differentially expressed between LD/LI tumours, with targeted hypermethylation of some genes (AXIN2, NKD1) occurring even in CIMP-negative LD cancers. AXIN2 mRNA expression was used as a discriminatory molecular biomarker to distinguish LD/LI tumours (area under the curve >0.93). CONCLUSIONS: Epigenetic suppression of appropriate Wnt negative feedback loops is selectively advantageous in LD tumours and differential AXIN2 expression in LD/LI lesions can be exploited as a molecular biomarker. Distinguishing between LD/LI tumour types is important; patients with LD tumours retain sensitivity to Wnt ligand inhibition and may be stratified at diagnosis to clinical trials of Porcupine inhibitors.
Assuntos
Neoplasias Colorretais/diagnóstico , Transdução de Sinais/genética , Proteína Wnt1/metabolismo , Idoso , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Marcadores Genéticos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Wnt1/genéticaRESUMO
OBJECTIVE: Serrated colorectal cancer (CRC) accounts for approximately 25% of cases and includes tumours that are among the most treatment resistant and with worst outcomes. This CRC subtype is associated with activating mutations in the mitogen-activated kinase pathway gene, BRAF, and epigenetic modifications termed the CpG Island Methylator Phenotype, leading to epigenetic silencing of key tumour suppressor genes. It is still not clear which (epi-)genetic changes are most important in neoplastic progression and we begin to address this knowledge gap herein. DESIGN: We use organoid culture combined with CRISPR/Cas9 genome engineering to sequentially introduce genetic alterations associated with serrated CRC and which regulate the stem cell niche, senescence and DNA mismatch repair. RESULTS: Targeted biallelic gene alterations were verified by DNA sequencing. Organoid growth in the absence of niche factors was assessed, as well as analysis of downstream molecular pathway activity. Orthotopic engraftment of complex organoid lines, but not BrafV600E alone, quickly generated adenocarcinoma in vivo with serrated features consistent with human disease. Loss of the essential DNA mismatch repair enzyme, Mlh1, led to microsatellite instability. Sphingolipid metabolism genes are differentially regulated in both our mouse models of serrated CRC and human CRC, with key members of this pathway having prognostic significance in the human setting. CONCLUSION: We generate rapid, complex models of serrated CRC to determine the contribution of specific genetic alterations to carcinogenesis. Analysis of our models alongside patient data has led to the identification of a potential susceptibility for this tumour type.
Assuntos
Adenocarcinoma/genética , Adenocarcinoma/patologia , Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Organoides/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Adenocarcinoma/metabolismo , Alelos , Colo/metabolismo , Neoplasias Colorretais/metabolismo , Ilhas de CpG/genética , Reparo de Erro de Pareamento de DNA , Análise Mutacional de DNA , Progressão da Doença , Epigenômica , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Modelos Genéticos , Mutação , Organoides/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas B-raf/metabolismoRESUMO
OBJECTIVE: IBD confers an increased lifetime risk of developing colorectal cancer (CRC), and colitis-associated CRC (CA-CRC) is molecularly distinct from sporadic CRC (S-CRC). Here we have dissected the evolutionary history of CA-CRC using multiregion sequencing. DESIGN: Exome sequencing was performed on fresh-frozen multiple regions of carcinoma, adjacent non-cancerous mucosa and blood from 12 patients with CA-CRC (n=55 exomes), and key variants were validated with orthogonal methods. Genome-wide copy number profiling was performed using single nucleotide polymorphism arrays and low-pass whole genome sequencing on archival non-dysplastic mucosa (n=9), low-grade dysplasia (LGD; n=30), high-grade dysplasia (HGD; n=13), mixed LGD/HGD (n=7) and CA-CRC (n=19). Phylogenetic trees were reconstructed, and evolutionary analysis used to reveal the temporal sequence of events leading to CA-CRC. RESULTS: 10/12 tumours were microsatellite stable with a median mutation burden of 3.0 single nucleotide alterations (SNA) per Mb, ~20% higher than S-CRC (2.5 SNAs/Mb), and consistent with elevated ageing-associated mutational processes. Non-dysplastic mucosa had considerable mutation burden (median 47 SNAs), including mutations shared with the neighbouring CA-CRC, indicating a precancer mutational field. CA-CRCs were often near triploid (40%) or near tetraploid (20%) and phylogenetic analysis revealed that copy number alterations (CNAs) began to accrue in non-dysplastic bowel, but the LGD/HGD transition often involved a punctuated 'catastrophic' CNA increase. CONCLUSIONS: Evolutionary genomic analysis revealed precancer clones bearing extensive SNAs and CNAs, with progression to cancer involving a dramatic accrual of CNAs at HGD. Detection of the cancerised field is an encouraging prospect for surveillance, but punctuated evolution may limit the window for early detection.
Assuntos
Transformação Celular Neoplásica/patologia , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Transformação Celular Neoplásica/genética , Colonoscopia/métodos , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Medição de Risco , Índice de Gravidade de DoençaRESUMO
Serrated polyps have been recognised in the last decade as important premalignant lesions accounting for between 15% and 30% of colorectal cancers. There is therefore a clinical need for guidance on how to manage these lesions; however, the evidence base is limited. A working group was commission by the British Society of Gastroenterology (BSG) Endoscopy section to review the available evidence and develop a position statement to provide clinical guidance until the evidence becomes available to support a formal guideline. The scope of the position statement was wide-ranging and included: evidence that serrated lesions have premalignant potential; detection and resection of serrated lesions; surveillance strategies after detection of serrated lesions; special situations-serrated polyposis syndrome (including surgery) and serrated lesions in colitis; education, audit and benchmarks and research questions. Statements on these issues were proposed where the evidence was deemed sufficient, and re-evaluated modified via a Delphi process until >80% agreement was reached. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) tool was used to assess the strength of evidence and strength of recommendation for finalised statements. Key recommendation: we suggest that until further evidence on the efficacy or otherwise of surveillance are published, patients with sessile serrated lesions (SSLs) that appear associated with a higher risk of future neoplasia or colorectal cancer (SSLs ≥10â mm or serrated lesions harbouring dysplasia including traditional serrated adenomas) should be offered a one-off colonoscopic surveillance examination at 3â years (weak recommendation, low quality evidence, 90% agreement).
Assuntos
Pólipos do Colo/diagnóstico , Pólipos do Colo/cirurgia , Pólipos/diagnóstico , Pólipos/cirurgia , Doenças Retais/diagnóstico , Doenças Retais/cirurgia , Adenoma/diagnóstico , Adenoma/genética , Adenoma/cirurgia , Polipose Adenomatosa do Colo/diagnóstico , Benchmarking , Biomarcadores/análise , Transformação Celular Neoplásica , Colite/complicações , Pólipos do Colo/genética , Colonoscopia , Ilhas de CpG/genética , DNA/isolamento & purificação , Metilação de DNA , Fezes/química , Humanos , Parassimpatolíticos/uso terapêutico , Pólipos/genética , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/cirurgia , Doenças Retais/genética , Terminologia como Assunto , Conduta ExpectanteRESUMO
The adenoma-carcinoma sequence describes the development of colorectal carcinoma (CRC) from benign colorectal precursor lesions. Molecular classification of established CRC has demonstrated considerable disease heterogeneity; however, as an emerging cancer frequently outgrows and destroys the initial precursor lesion, CRC molecular taxonomy can only be partially reconciled with histologically classified polyps. Thus, the molecular pathogenesis of some colorectal polyp types, including the traditional serrated adenoma (TSA), is still unclear. Now, candidate driver gene analysis of a cohort of different polyps reveals characteristic, but highly variable, mutations disrupting the Wnt signalling pathway across different histological polyp subtypes. How and when different precursor lesions acquire Wnt disruption reflects important distinctions in polyp biology, dependent on a combination of the dominant molecular pathway and the cell of origin of individual lesions. TSAs preferentially acquire ligand-dependent Wnt activating mutations, which means that the cancers that arise from these aggressive polyps may be sensitive to targeted Wnt inhibition. This paper demonstrates that applying next-generation sequencing technology to improve our understanding of colorectal precursor lesion molecular pathogenesis could also give important and translationally relevant insights into colorectal cancer biology. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Adenoma/genética , Pólipos do Colo/genética , Neoplasias Colorretais/genética , Humanos , Pólipos Intestinais , Reino UnidoRESUMO
The last decade has seen huge improvements in our understanding of intestinal stem cell biology, with major advances arising from the ability to transgenically label, and thus identify, murine stem cells and their progeny. In the human, transgenic labelling is not an available option and stem cell dynamic observations have been based on rare hereditary mutations and polymorphisms. Somatic mitochondrial DNA mutations cause a histochemically detectable, but neutrally selected, change in cytochrome c oxidase (CCO) enzyme activity and when this occurs in an intestinal stem cell, it can be used as an effective clonal marker in both health and disease. The intestinal crypt is the functional unit of the gut. Daughter cells are 'born' in the stem cell niche at the crypt base and proliferate, differentiate, and then apoptose as they migrate along the vertical crypt axis over 5-7 days. This stereotypical architecture provides a historical record of cell dynamics, as the distance travelled along the crypt axis is proportional to the time since the daughter cell was born. By staining, identifying, and carefully reconstructing crypt maps from serial en face sections of partially mutated mtDNA crypts, clonal ribbon images can be generated. 'Wiggles' in the width of the clonal ribbon reflect mtDNA mutated stem cell expansion or contraction events and these biological observations are applied in mathematical models. This clever approach is able to infer temporal evolutionary dynamics from a static, single time point measurement, in both normal and familial adenomatous polyposis tissue. As we have seen in the mouse, the simple ability to identify stem cell progeny can lead to a vast expansion in our understanding of stem cell evolution. The use of these techniques to trace recent stem cell dynamics in the human colon makes some headway into the knowledge gap in our understanding of murine and human intestinal stem cell biology. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Assuntos
Diferenciação Celular/fisiologia , Colo/citologia , Células-Tronco/citologia , Animais , HumanosRESUMO
OBJECTIVE: Wnt signalling is critical for normal intestinal development and homeostasis. Wnt dysregulation occurs in almost all human and murine intestinal tumours and an optimal but not excessive level of Wnt activation is considered favourable for tumourigenesis. The authors assessed effects of pan-intestinal Wnt activation on tissue homeostasis, taking into account underlying physiological Wnt activity and stem-cell number in each region of the bowel. DESIGN: The authors generated mice that expressed temporally controlled, stabilised ß-catenin along the crypt-villus axis throughout the intestines. Physiological Wnt target gene activity was assessed in different regions of normal mouse and human tissue. Human intestinal tumour mutation spectra were analysed. RESULTS: In the mouse, ß-catenin stabilisation resulted in a graduated neoplastic response, ranging from dysplastic transformation of the entire epithelium in the proximal small bowel to slightly enlarged crypts of non-dysplastic morphology in the colorectum. In contrast, stem and proliferating cell numbers were increased in all intestinal regions. In the normal mouse and human intestines, stem-cell and Wnt gradients were non-identical, but higher in the small bowel than large bowel in both species. There was also variation in the expression of some Wnt modulators. Human tumour analysis confirmed that different APC mutation spectra are selected in different regions of the bowel. CONCLUSIONS: There are variable gradients in stem-cell number, physiological Wnt activity and response to pathologically increased Wnt signalling along the crypt-villus axis and throughout the length of the intestinal tract. The authors propose that this variation influences regional mutation spectra, tumour susceptibility and lesion distribution in mice and humans.