Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Clin Invest ; 54(8): e14212, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38591651

RESUMO

BACKGROUND: Bone morphogenetic protein 9 (BMP9) is a hepatokine that plays a pivotal role in the progression of liver diseases. Moreover, an increasing number of studies have shown that BMP9 is associated with hepatopulmonary syndrome (HPS), but its role in HPS is unclear. Here, we evaluated the influence of CBDL on BMP9 expression and investigated potential mechanisms of BMP9 signalling in HPS. METHODS: We profiled the circulating BMP9 levels in common bile duct ligation-induced HPS rat model, and then investigated the effects and mechanisms of HPS rat serum on pulmonary vascular endothelial dysfunction in rat model, as well as in primarily cultured rat pulmonary microvascular endothelial cells. RESULTS: Our data revealed that circulating BMP9 levels were significantly increased in the HPS rats compared to control group. Besides, the elevated BMP9 in HPS rat serum was not only crucial for promoting endothelial cell proliferation and tube formation through the activin receptor-like kinase1 (ALK1)-Endoglin-Smad1/5/9 pathway, but also important for accumulation of monocytes. Treatments with ALK1-Fc or silencing ALK1 expression to inhibit the BMP9 signalling pathway effectively eliminated these effects. In agreement with these observations, increased circulating BMP9 was associated with an increase in lung vessel density and accumulation of pro-angiogenic monocytes in the microvasculature in HPS rats. CONCLUSIONS: This study provided evidence that elevated circulating BMP9, secreted from the liver, promote pulmonary angiogenesis in HPS rats via ALK1-Endoglin-Smad1/5/9 pathway. In addition, BMP9-regulated pathways are also involved in accumulation of pro-angiogenic monocytes in the pulmonary microvasculature in HPS rats.


Assuntos
Receptores de Activinas Tipo II , Endoglina , Fator 2 de Diferenciação de Crescimento , Síndrome Hepatopulmonar , Pulmão , Neovascularização Patológica , Transdução de Sinais , Proteína Smad1 , Animais , Síndrome Hepatopulmonar/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Ratos , Receptores de Activinas Tipo II/metabolismo , Pulmão/metabolismo , Masculino , Proteína Smad1/metabolismo , Endoglina/metabolismo , Neovascularização Patológica/metabolismo , Células Endoteliais/metabolismo , Modelos Animais de Doenças , Proteína Smad5/metabolismo , Ratos Sprague-Dawley , Proliferação de Células , Ducto Colédoco , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Monócitos/metabolismo , Angiogênese , Receptores de Ativinas
2.
Opt Lett ; 49(9): 2385-2388, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691725

RESUMO

We demonstrate that the temporal contrast of femtosecond light pulses is a critical parameter in laser writing inside transparent dielectrics, allowing different material modifications. In particular, anisotropic nanopores in silica glass are produced by high-contrast of 107 femtosecond Yb:KGW laser pulses rather than low-contrast of 103 Yb fiber laser pulses. The difference originates in the fiber laser storing a third of its energy in a post-pulse of up to 200 ps duration. The absorption of this low-intensity fraction of the pulse by laser-induced transient defects with relatively long lifetime and low excitation energy, such as self-trapped holes, drastically changes the kinetics of energy deposition and the type of material modification. We also demonstrate that low-contrast pulses are effective in creating lamellar birefringent structures, possibly driven by a quadrupole nonlinear current.

3.
Opt Lett ; 49(2): 270-273, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194545

RESUMO

Amplifying radially and azimuthally polarized beams is a significant challenge due to the instability of the complex beam shape and polarization in inhomogeneous environment. In this Letter, we demonstrated experimentally an efficient approach to directly amplify cylindrical-vector beams with axially symmetric polarization and doughnut-shaped intensity profile in a picosecond MOPA system based on a double-clad ytterbium-doped tapered fiber. To prevent polarization and beam shape distortion during amplification, for the first time to the best of our knowledge, we proposed using the spun architecture of the tapered fiber. In contrast to an isotropic fiber architecture, a spun configuration possessing nearly circular polarization eigenstates supports stable wavefront propagation. Applying this technique, we amplified the cylindrical-vector beam with 10 ps pulses up to 22 W of the average power at a central wavelength of 1030 nm and a repetition rate of 15 MHz, maintaining both mode and polarization stability.

4.
Adv Sci (Weinh) ; 11(28): e2402340, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38666424

RESUMO

Prussian blue analogs (PBAs) are considered as one of the most potential electrode materials in capacitive deionization (CDI) due to their unique 3D framework structure. However, their practical applications suffer from low desalination capacity and poor cyclic stability. Here, an entropy engineering strategy is proposed that incorporates high-entropy (HE) concept into PBAs to address the unfavorable multistage phase transitions during CDI desalination. By introducing five or more metals, which share N coordination site, high-entropy hexacyanoferrate (HE-HCF) is constructed, thereby increasing the configurational entropy of the system to above 1.5R and placing it into the high-entropy category. As a result, the developed HE-HCF demonstrates remarkable cycling performance, with a capacity retention rate of over 97% after undergoing 350 ultralong-life cycles of adsorption/desorption. Additionally, it exhibits a high desalination capacity of 77.24 mg g-1 at 1.2 V. Structural characterization and theoretical calculation reveal that high configurational entropy not only helps to restrain phase transition and strengthen structural stability, but also optimizes Na+ ions diffusion path and energy barrier, accelerates reaction kinetics and thus improves performance. This research introduces a new approach for designing electrodes with high performance, low cost, and long-lasting durability for capacitive deionization applications.

5.
J Clin Transl Hepatol ; 12(5): 496-504, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38779522

RESUMO

Background and Aims: Hepatopulmonary syndrome (HPS) is characterized by arterial oxygenation defects due to pulmonary vascular dilation in liver disease. To date, liver transplantation remains the only effective treatment for HPS. This study aimed to explore the preventative role of baicalein in HPS development. Methods: Sixty male rats were randomly assigned to three groups: sham, common bile duct ligation (CBDL), and baicalein, receiving intraperitoneal injections of baicalein (40 mg·kg-1·d-1, diluted in saline) for 21 days. Survival rate, liver and kidney function, and bile acid metabolism levels were evaluated. Liver and lung angiogenesis and hepatic glycogen staining were assessed, and the expression of relevant proteins was evaluated by immunohistochemistry. Results: Baicalein improved survival rates and hypoxemia in rats post-CBDL, reducing angiogenic protein levels and enhancing glucose homeostasis. Compared to the untreated group, baicalein suppressed the expression of vascular endothelial growth factor, placental growth factors, matrix metalloprotease 9 and C-X-C motif chemokine 2, and it increased the expression of glycemic regulatory proteins, including dipeptidyl peptidase-4, sirtuin 1, peroxisome proliferator-activated receptor gamma co-activator 1α, and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3. Conclusion: Baicalein significantly improves hepatic function and hypoxia in HPS rats by attenuating pathological angiogenesis in the liver and lungs, showing promise as a treatment for HPS.

6.
PeerJ ; 12: e16744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250717

RESUMO

Aims: The objective of this study is to examine the impact of inhibiting Sphingosine 1-phosphate receptor 2 (S1PR2) on liver inflammation, fibrogenesis, and changes of gut microbiome in the context of cholestasis-induced conditions. Methods: The cholestatic liver injury model was developed by common bile duct ligation (CBDL). Sprague-Dawley rats were randomly allocated to three groups, sham operation, CBDL group and JTE-013 treated CBDL group. Biochemical and histological assessments were conducted to investigate the influence of S1PR2 on the modulation of fibrogenic factors and inflammatory infiltration. We conducted an analysis of the fecal microbiome by using 16S rRNA sequencing. Serum bile acid composition was evaluated through the utilization of liquid chromatography-mass spectrometry techniques. Results: In the BDL rat model, the study findings revealed a significant increase in serum levels of conjugated bile acids, accompanied by an overexpression of S1PR2. Treatment with the specific inhibitor of S1PR2, known as JTE-013, resulted in a range of specific effects on the BDL rats. These effects included the improvement of liver function, reduction of liver inflammation, inhibition of hepatocyte apoptosis, and suppression of NETosis. These effects are likely mediated through the TCA/S1PR2/NOX2/NLRP3 pathway. Furthermore, the administration of JTE-013 resulted in an augmentation of the diversity of the bacterial community's diversity, facilitating the proliferation of advantageous species while concurrently inhibiting the prevalence of detrimental bacteria. Conclusions: The results of our study suggest that the administration of JTE-013 may have a beneficial effect in alleviating cholestatic liver disease and restoring the balance of intestinal flora.


Assuntos
Colestase , Hepatopatias , Animais , Ratos , Ratos Sprague-Dawley , Receptores de Esfingosina-1-Fosfato , RNA Ribossômico 16S , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA