Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(12): 2507-2519, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34107306

RESUMO

Protein homeostasis mechanisms are fundamentally important to match cellular needs and to counteract stress conditions. A fundamental challenge is to understand how defective proteins are recognized and extracted from cellular organelles to be degraded in the cytoplasm. The endoplasmic reticulum (ER)-associated degradation (ERAD) pathway is the best-understood organellar protein quality control system. Here, we review new insights into the mechanism of recognition and retrotranslocation of client proteins in ERAD. In addition to the membrane-integral ERAD E3 ubiquitin ligases, we highlight one protein family that is remarkably often involved in various aspects of membrane protein quality control and protein dislocation: the rhomboid superfamily, which includes derlins and intramembrane serine proteases. Rhomboid-like proteins have been found to control protein homeostasis in the ER, but also in other eukaryotic organelles and in bacteria, pointing toward conserved principles of membrane protein quality control across organelles and evolution.


Assuntos
Degradação Associada com o Retículo Endoplasmático/fisiologia , Proteostase/fisiologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Células Eucarióticas/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
2.
Mol Cell ; 69(2): 161-162, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29351840

RESUMO

Defective ER-resident membrane proteins need to be ejected into the cytoplasm in order to be degraded by the proteasome, but the exact mechanism remains unclear. In this issue of Molecular Cell, Neal et al. (2018) reveal that the rhomboid pseudoprotease Dfm1 defines the central ERAD component for membrane protein dislocation.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Proteínas de Membrana , Retículo Endoplasmático , Complexo de Endopeptidases do Proteassoma
3.
J Biol Chem ; 300(2): 105644, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218226

RESUMO

Intramembrane proteolysis regulates important processes such as signaling and transcriptional and posttranslational abundance control of proteins with key functions in metabolic pathways. This includes transcriptional control of mevalonate pathway genes, thereby ensuring balanced biosynthesis of cholesterol and other isoprenoids. Our work shows that, at high cholesterol levels, signal peptide peptidase (SPP) cleaves squalene synthase (SQS), an enzyme that defines the branching point for allocation of isoprenoids to the sterol and nonsterol arms of the mevalonate pathway. This intramembrane cleavage releases SQS from the membrane and targets it for proteasomal degradation. Regulation of this mechanism is achieved by the E3 ubiquitin ligase TRC8 that, in addition to ubiquitinating SQS in response to cholesterol levels, acts as an allosteric activator of SPP-catalyzed intramembrane cleavage of SQS. Cellular cholesterol levels increase in the absence of SPP activity. We infer from these results that, SPP-TRC8 mediated abundance control of SQS acts as a regulation step within the mevalonate pathway.


Assuntos
Farnesil-Difosfato Farnesiltransferase , Ácido Mevalônico , Ácido Aspártico Endopeptidases , Colesterol/metabolismo , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Ácido Mevalônico/metabolismo , Terpenos , Células HEK293 , Humanos
4.
EMBO J ; 39(10): e105012, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32338387

RESUMO

Rhomboid intramembrane serine proteases are present in all kingdoms of life, but as we do not know their substrates in many species, it remains puzzling why rhomboids are among the most-conserved integral membrane proteins. Two new studies in The EMBO Journal by Began et al and Liu et al now link bacterial rhomboid proteases to membrane protein degradation, showing striking similarities to what is known about eukaryotic rhomboid family proteins, thus pointing toward a conserved membrane surveillance mechanism.


Assuntos
Proteínas de Bactérias , Proteínas de Membrana , ATPases Associadas a Diversas Atividades Celulares , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Degradação Associada com o Retículo Endoplasmático , Licenciamento , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Peptídeo Hidrolases/metabolismo
5.
J Biol Chem ; 298(9): 102321, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921890

RESUMO

The intramembrane protease PARL acts as a crucial mitochondrial safeguard by cleaving the mitophagy regulators PINK1 and PGAM5. Depending on the stress level, PGAM5 can either stimulate cell survival or cell death. In contrast to PINK1, which is constantly cleaved in healthy mitochondria and only active when the inner mitochondrial membrane is depolarized, PGAM5 processing is inversely regulated. However, determinants of PGAM5 that indicate it as a conditional substrate for PARL have not been rigorously investigated, and it is unclear how uncoupling the mitochondrial membrane potential affects its processing compared to that of PINK1. Here, we show that several polar transmembrane residues in PGAM5 distant from the cleavage site serve as determinants for its PARL-catalyzed cleavage. Our NMR analysis indicates that a short N-terminal amphipathic helix, followed by a kink and a C-terminal transmembrane helix harboring the scissile peptide bond are key for a productive interaction with PARL. Furthermore, we also show that PGAM5 is stably inserted into the inner mitochondrial membrane until uncoupling the membrane potential triggers its disassembly into monomers, which are then cleaved by PARL. In conclusion, we propose a model in which PGAM5 is slowly processed by PARL-catalyzed cleavage that is influenced by multiple hierarchical substrate features, including a membrane potential-dependent oligomeric switch.


Assuntos
Homeostase , Metaloproteases , Mitocôndrias , Proteínas Mitocondriais , Fosfoproteínas Fosfatases , Proteólise , Células HeLa , Humanos , Metaloproteases/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Peptídeos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/metabolismo
6.
J Biol Chem ; 296: 100383, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556373

RESUMO

The rhomboid protease PARL is a critical regulator of mitochondrial homeostasis through its cleavage of substrates such as PINK1, PGAM5, and Smac/Diablo, which have crucial roles in mitochondrial quality control and apoptosis. However, the catalytic properties of PARL, including the effect of lipids on the protease, have never been characterized in vitro. To address this, we isolated human PARL expressed in yeast and used FRET-based kinetic assays to measure proteolytic activity in vitro. We show that PARL activity in detergent is enhanced by cardiolipin, a lipid enriched in the mitochondrial inner membrane. Significantly higher turnover rates were observed for PARL reconstituted in proteoliposomes, with Smac/Diablo being cleaved most rapidly at a rate of 1 min-1. In contrast, PGAM5 is cleaved with the highest efficiency (kcat/KM) compared with PINK1 and Smac/Diablo. In proteoliposomes, a truncated ß-cleavage form of PARL, a physiological form known to affect mitochondrial fragmentation, is more active than the full-length enzyme for hydrolysis of PINK1, PGAM5, and Smac/Diablo. Multiplex profiling of 228 peptides reveals that PARL prefers substrates with a bulky side chain such as Phe in P1, which is distinct from the preference for small side chain residues typically found with bacterial rhomboid proteases. This study using recombinant PARL provides fundamental insights into its catalytic activity and substrate preferences that enhance our understanding of its role in mitochondrial function and has implications for specific inhibitor design.


Assuntos
Metaloproteases/metabolismo , Metaloproteases/fisiologia , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Domínio Catalítico , Endopeptidases/metabolismo , Células HEK293 , Células HeLa , Humanos , Metaloproteases/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Peptídeo Hidrolases/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteólise
7.
EMBO J ; 37(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29976761

RESUMO

Proteolytic removal of membrane protein ectodomains (ectodomain shedding) is a post-translational modification that controls levels and function of hundreds of membrane proteins. The contributing proteases, referred to as sheddases, act as important molecular switches in processes ranging from signaling to cell adhesion. When deregulated, ectodomain shedding is linked to pathologies such as inflammation and Alzheimer's disease. While proteases of the "a disintegrin and metalloprotease" (ADAM) and "beta-site APP cleaving enzyme" (BACE) families are widely considered as sheddases, in recent years a much broader range of proteases, including intramembrane and soluble proteases, were shown to catalyze similar cleavage reactions. This review demonstrates that shedding is a fundamental process in cell biology and discusses the current understanding of sheddases and their substrates, molecular mechanisms and cellular localizations, as well as physiological functions of protein ectodomain shedding. Moreover, we provide an operational definition of shedding and highlight recent conceptual advances in the field. While new developments in proteomics facilitate substrate discovery, we expect that shedding is not a rare exception, but rather the rule for many membrane proteins, and that many more interesting shedding functions await discovery.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Domínios Proteicos/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteólise , Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Humanos , Transdução de Sinais
8.
J Cell Sci ; 133(6)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32005703

RESUMO

The endoplasmic reticulum (ER)-resident intramembrane rhomboid protease RHBDL4 generates metastable protein fragments and together with the ER-associated degradation (ERAD) machinery provides a clearance mechanism for aberrant and surplus proteins. However, the endogenous substrate spectrum and with that the role of RHBDL4 in physiological ERAD is mainly unknown. Here, we use a substrate trapping approach in combination with quantitative proteomics to identify physiological RHBDL4 substrates. This revealed oligosaccharyltransferase (OST) complex subunits such as the catalytic active subunit STT3A as substrates for the RHBDL4-dependent ERAD pathway. RHBDL4-catalysed cleavage inactivates OST subunits by triggering dislocation into the cytoplasm and subsequent proteasomal degradation. RHBDL4 thereby controls the abundance and activity of OST, suggesting a novel link between the ERAD machinery and glycosylation tuning.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Hexosiltransferases , Proteínas de Membrana , Hexosiltransferases/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peptídeo Hidrolases/metabolismo
9.
FASEB J ; 35(3): e21380, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33566379

RESUMO

Interleukin-11 (IL-11) is a pleiotropic cytokine with both pro- and anti-inflammatory properties. It activates its target cells via binding to the membrane-bound IL-11 receptor (IL-11R), which then recruits a homodimer of the ubiquitously expressed, signal-transducing receptor gp130. Besides this classic signaling pathway, IL-11 can also bind to soluble forms of the IL-11R (sIL-11R), and IL-11/sIL-11R complexes activate cells via the induction of gp130 homodimerization (trans-signaling). We have previously reported that the metalloprotease ADAM10 cleaves the membrane-bound IL-11R and thereby generates sIL-11R. In this study, we identify the rhomboid intramembrane protease RHBDL2 as a so far unrecognized alternative sheddase that can efficiently trigger IL-11R secretion. We determine the cleavage site used by RHBDL2, which is located in the extracellular part of the receptor in close proximity to the plasma membrane, between Ala-370 and Ser-371. Furthermore, we identify critical amino acid residues within the transmembrane helix that are required for IL-11R proteolysis. We also show that ectopically expressed RHBDL2 is able to cleave the IL-11R within the early secretory pathway and not only at the plasma membrane, indicating that its subcellular localization plays a central role in controlling its activity. Moreover, RHBDL2-derived sIL-11R is biologically active and able to perform IL-11 trans-signaling. Finally, we show that the human mutation IL-11R-A370V does not impede IL-11 classic signaling, but prevents RHBDL2-mediated IL-11R cleavage.


Assuntos
Interleucina-11/fisiologia , Receptores de Interleucina-11/metabolismo , Serina Endopeptidases/fisiologia , Células HEK293 , Células HeLa , Humanos , Proteólise , Receptores de Interleucina-11/química , Transdução de Sinais/fisiologia
10.
Mol Cell ; 56(5): 630-40, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25454947

RESUMO

Proteolysis by aspartyl intramembrane proteases such as presenilin and signal peptide peptidase (SPP) underlies many cellular processes in health and disease. Saccharomyces cerevisiae encodes a homolog that we named yeast presenilin fold 1 (Ypf1), which we verify to be an SPP-type protease that localizes to the endoplasmic reticulum (ER). Our work shows that Ypf1 functionally interacts with the ER-associated degradation (ERAD) factors Dfm1 and Doa10 to regulate the abundance of nutrient transporters by degradation. We demonstrate how this noncanonical branch of the ERAD pathway, which we termed "ERAD regulatory" (ERAD-R), responds to ligand-mediated sensing as a trigger. More generally, we show that Ypf1-mediated posttranslational regulation of plasma membrane transporters is indispensible for early sensing and adaptation to nutrient depletion. The combination of systematic analysis alongside mechanistic details uncovers a broad role of intramembrane proteolysis in regulating secretome dynamics.


Assuntos
Retículo Endoplasmático/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Membrana Celular/metabolismo , Degradação Associada com o Retículo Endoplasmático , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Saccharomyces cerevisiae/fisiologia , Alinhamento de Sequência , Ubiquitina-Proteína Ligases/metabolismo , Zinco/metabolismo
11.
J Cell Sci ; 132(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31416853

RESUMO

Over the last two decades, a group of unusual proteases, so-called intramembrane proteases, have become increasingly recognized for their unique ability to cleave peptide bonds within cellular membranes. They are found in all kingdoms of life and fulfil versatile functions ranging from protein maturation, to activation of signalling molecules, to protein degradation. In this Cell Science at a Glance article and the accompanying poster, we focus on intramembrane proteases in mammalian cells. By comparing intramembrane proteases in different cellular organelles, we set out to review their functions within the context of the roles of individual cellular compartments. Additionally, we exemplify their mode of action in relation to known substrates by distinguishing cleavage events that promote degradation of substrate from those that release active domains from the membrane bilayer.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Animais , Humanos
12.
Nat Methods ; 15(8): 598-600, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29988096

RESUMO

Here we describe a C-SWAT library for high-throughput tagging of Saccharomyces cerevisiae open reading frames (ORFs). In 5,661 strains, we inserted an acceptor module after each ORF that can be efficiently replaced with tags or regulatory elements. We validated the library with targeted sequencing and tagged the proteome with bright fluorescent proteins to quantify the effect of heterologous transcription terminators on protein expression and to localize previously undetected proteins.


Assuntos
Genoma Fúngico , Biblioteca Genômica , Saccharomyces cerevisiae/genética , DNA Fúngico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Proteoma/genética , Proteômica , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Sitios de Sequências Rotuladas
13.
EMBO Rep ; 20(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30733280

RESUMO

Signal peptide peptidase (SPP) and the four homologous SPP-like (SPPL) proteases constitute a family of intramembrane aspartyl proteases with selectivity for type II-oriented transmembrane segments. Here, we analyse the physiological function of the orphan protease SPPL2c, previously considered to represent a non-expressed pseudogene. We demonstrate proteolytic activity of SPPL2c towards selected tail-anchored proteins. Despite shared ER localisation, SPPL2c and SPP exhibit distinct, though partially overlapping substrate spectra and inhibitory profiles, and are organised in different high molecular weight complexes. Interestingly, SPPL2c is specifically expressed in murine and human testis where it is primarily localised in spermatids. In mice, SPPL2c deficiency leads to a partial loss of elongated spermatids and reduced motility of mature spermatozoa, but preserved fertility. However, matings of male and female SPPL2c-/- mice exhibit reduced litter sizes. Using proteomics we identify the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2)-regulating protein phospholamban (PLN) as a physiological SPPL2c substrate. Accumulation of PLN correlates with a decrease in intracellular Ca2+ levels in elongated spermatids that likely contribute to the compromised male germ cell differentiation and function of SPPL2c-/- mice.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/enzimologia , Células Germinativas/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Ácido Aspártico Endopeptidases/química , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Células HEK293 , Células HeLa , Homeostase , Humanos , Masculino , Proteínas de Membrana/química , Camundongos , Especificidade de Órgãos , Espermátides/metabolismo , Especificidade por Substrato , Testículo/enzimologia
14.
J Biol Chem ; 294(8): 2786-2800, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30578301

RESUMO

The endoplasmic reticulum (ER), as a multifunctional organelle, plays crucial roles in lipid biosynthesis and calcium homeostasis as well as the synthesis and folding of secretory and membrane proteins. Therefore, it is of high importance to maintain ER homeostasis and to adapt ER function and morphology to cellular needs. Here, we show that signal peptide peptidase (SPP) modulates the ER shape through degradation of morphogenic proteins. Elevating SPP activity induces rapid rearrangement of the ER and formation of dynamic ER clusters. Inhibition of SPP activity rescues the phenotype without the need for new protein synthesis, and this rescue depends on a pre-existing pool of proteins in the Golgi. With the help of organelle proteomics, we identified certain membrane proteins to be diminished upon SPP expression and further show that the observed morphology changes depend on SPP-mediated cleavage of ER morphogenic proteins, including the SNARE protein syntaxin-18. Thus, we suggest that SPP-mediated protein abundance control by a regulatory branch of ER-associated degradation (ERAD-R) has a role in shaping the early secretory pathway.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Organelas/metabolismo , Proteínas Qa-SNARE/metabolismo , Células HEK293 , Humanos , Proteólise , Proteômica
15.
Mol Cell ; 47(4): 558-69, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22795130

RESUMO

The ER-associated degradation (ERAD) pathway serves as an important cellular safeguard by directing incorrectly folded and unassembled proteins from the ER to the proteasome. Still, however, little is known about the components mediating ERAD of membrane proteins. Here we show that the evolutionary conserved rhomboid family protein RHBDL4 is a ubiquitin-dependent ER-resident intramembrane protease that is upregulated upon ER stress. RHBDL4 cleaves single-spanning and polytopic membrane proteins with unstable transmembrane helices, leading to their degradation by the canonical ERAD machinery. RHBDL4 specifically binds the AAA+-ATPase p97, suggesting that proteolytic processing and dislocation into the cytosol are functionally linked. The phylogenetic relationship between rhomboids and the ERAD factor derlin suggests that substrates for intramembrane proteolysis and protein dislocation are recruited by a shared mechanism.


Assuntos
Degradação Associada com o Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Peptídeo Hidrolases/metabolismo , Ubiquitina/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Células Cultivadas , Citosol/metabolismo , Retículo Endoplasmático/genética , Degradação Associada com o Retículo Endoplasmático/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Peptídeo Hidrolases/genética , Filogenia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteólise , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Ubiquitina/genética
16.
Semin Cell Dev Biol ; 60: 29-37, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27378062

RESUMO

Rhomboids, proteases containing an unusual membrane-integral serine protease active site, were first identified in Drosophila, where they fulfill an essential role in epidermal growth factor receptor signaling, by cleaving membrane-tethered growth factor precursors. It has recently become apparent that eukaryotic genomes harbor conserved catalytically inactive rhomboid protease homologs, including derlins and iRhoms. Here we highlight how loss of proteolytic activity was followed in evolution by impressive functional diversification, enabling these pseudoproteases to fulfill crucial roles within the secretory pathway, including protein degradation, trafficking regulation, and inflammatory signaling. We distil the current understanding of the roles of rhomboid pseudoproteases in development and disease. Finally, we address mechanistically how versatile features of proteolytically active rhomboids have been elaborated to serve the sophisticated functions of their pseudoprotease cousins. By comparing functional and structural clues, we highlight common principles shared by the rhomboid superfamily, and make mechanistic predictions.


Assuntos
Doença , Saúde , Proteínas Mitocondriais/metabolismo , Animais , Humanos , Modelos Biológicos , Peptídeo Hidrolases/metabolismo , Transporte Proteico
17.
EMBO J ; 33(21): 2492-506, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25239945

RESUMO

Signal peptide peptidase (SPP) catalyzes intramembrane proteolysis of signal peptides at the endoplasmic reticulum (ER), but has also been suggested to play a role in ER-associated degradation (ERAD). Here, we show that SPP forms a complex with the ERAD factor Derlin1 and the E3 ubiquitin ligase TRC8 to cleave the unfolded protein response (UPR) regulator XBP1u. Cleavage occurs within a so far unrecognized type II transmembrane domain, which renders XBP1u as an SPP substrate through specific sequence features. Additionally, Derlin1 acts in the complex as a substrate receptor by recognizing the luminal tail of XBP1u. Remarkably, this interaction of Derlin1 with XBP1u obviates the need for ectodomain shedding prior to SPP cleavage, commonly required for intramembrane cuts. Furthermore, we show that XBP1u inhibits the UPR transcription factor XBP1s by targeting it toward proteasomal degradation. Thus, we identify an ERAD complex that controls the abundance of XBP1u and thereby tunes signaling through the UPR.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Proteínas de Membrana/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Serina Endopeptidases/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Complexo de Endopeptidases do Proteassoma/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição de Fator Regulador X , Serina Endopeptidases/genética , Fatores de Transcrição/genética , Proteína 1 de Ligação a X-Box
18.
Biochim Biophys Acta ; 1864(10): 1363-71, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27426920

RESUMO

We describe in detail the usage of leucine metabolic labelling in yeast in order to monitor quantitative proteome alterations, e.g. upon removal of a protease. Since laboratory yeast strains are typically leucine auxotroph, metabolic labelling with trideuterated leucine (d3-leucine) is a straightforward, cost-effective, and ubiquitously applicable strategy for quantitative proteomic studies, similar to the widely used arginine/lysine metabolic labelling method for mammalian cells. We showcase the usage of advanced peptide quantification using the FeatureFinderMultiplex algorithm (part of the OpenMS software package) for robust and reliable quantification. Furthermore, we present an OpenMS bioinformatics data analysis workflow that combines accurate quantification with high proteome coverage. In order to enable visualization, peptide-mapping, and sharing of quantitative proteomic data, especially for membrane-spanning and cell-surface proteins, we further developed the web-application Proteator (http://proteator.appspot.com). Due to its simplicity and robustness, we expect metabolic leucine labelling in yeast to be of great interest to the research community. As an exemplary application, we show the identification of the copper transporter Ctr1 as a putative substrate of the ER-intramembrane protease Ypf1 by yeast membrane proteomics using d3-leucine isotopic labelling.


Assuntos
Retículo Endoplasmático/metabolismo , Leucina/metabolismo , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Peptídeo Hidrolases/metabolismo , Proteoma/metabolismo , Leveduras/metabolismo , Biologia Computacional/métodos , Proteínas Fúngicas/metabolismo , Marcação por Isótopo/métodos , Mapeamento de Peptídeos/métodos , Peptídeos/metabolismo , Proteômica/métodos
19.
Biochim Biophys Acta ; 1828(12): 2840-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23562403

RESUMO

From proteases that cleave peptide bonds in the plane of the membrane, rhomboids have evolved into a heterogeneous superfamily with a wide range of different mechanistic properties. In mammals 14 family members have been annotated based on a shared conserved membrane-integral rhomboid core domain, including intramembrane serine proteases and diverse proteolytically inactive homologues. While the function of rhomboid proteases is the proteolytic release of membrane-tethered factors, rhomboid pseudoproteases including iRhoms and derlins interact with their clients without cleaving them. It has become evident that specific recognition of membrane protein substrates and clients by the rhomboid fold reflects a spectrum of cellular functions ranging from growth factor activation, trafficking control to membrane protein degradation. This review summarizes recent progress on rhomboid family proteins in the mammalian secretory pathway and raises the question whether they can be seen as new drug targets for inflammatory diseases and cancer. This article is part of a special issue entitled: Intramembrane Proteases.


Assuntos
Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Transdução de Sinais , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Filogenia , Proteólise , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Proteases/química , Serina Proteases/genética , Especificidade por Substrato
20.
J Immunol ; 188(6): 2794-804, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22345649

RESUMO

Human CMV (HCMV)-encoded NK cell-evasion functions include an MHC class I homolog (UL18) with high affinity for the leukocyte inhibitory receptor-1 (CD85j, ILT2, or LILRB1) and a signal peptide (SP(UL40)) that acts by upregulating cell surface expression of HLA-E. Detailed characterization of SP(UL40) revealed that the N-terminal 14 aa residues bestowed TAP-independent upregulation of HLA-E, whereas C region sequences delayed processing of SP(UL40) by a signal peptide peptidase-type intramembrane protease. Most significantly, the consensus HLA-E-binding epitope within SP(UL40) was shown to promote cell surface expression of both HLA-E and gpUL18. UL40 was found to possess two transcription start sites, with utilization of the downstream site resulting in translation being initiated within the HLA-E-binding epitope (P2). Remarkably, this truncated SP(UL40) was functional and retained the capacity to upregulate gpUL18 but not HLA-E. Thus, our findings identify an elegant mechanism by which an HCMV signal peptide differentially regulates two distinct NK cell-evasion pathways. Moreover, we describe a natural SP(UL40) mutant that provides a clear example of an HCMV clinical virus with a defect in an NK cell-evasion function and exemplifies issues that confront the virus when adapting to immunogenetic diversity in the host.


Assuntos
Proteínas do Capsídeo/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Evasão da Resposta Imune/imunologia , Células Matadoras Naturais/imunologia , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Northern Blotting , Western Blotting , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Membrana Celular/imunologia , Membrana Celular/metabolismo , Separação Celular , Citomegalovirus/genética , Citomegalovirus/imunologia , Citomegalovirus/metabolismo , Infecções por Citomegalovirus , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Células Matadoras Naturais/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Virais/genética , Proteínas Virais/imunologia , Antígenos HLA-E
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA