Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 227(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38054362

RESUMO

Chronically high blood glucose levels (hyperglycaemia) can compromise healthy ageing and lifespan at the individual level. Elevated oxidative stress can play a central role in hyperglycaemia-induced pathologies. Nevertheless, the lifespan of birds shows no species-level association with blood glucose. This suggests that the potential pathologies of high blood glucose levels can be avoided by adaptations in oxidative physiology at the macroevolutionary scale. However, this hypothesis remains unexplored. Here, we examined this hypothesis using comparative analyses controlled for phylogeny, allometry and fecundity based on data from 51 songbird species (681 individuals with blood glucose data and 1021 individuals with oxidative state data). We measured blood glucose at baseline and after stress stimulus and computed glucose stress reactivity as the magnitude of change between the two time points. We also measured three parameters of non-enzymatic antioxidants (uric acid, total antioxidants and glutathione) and a marker of oxidative lipid damage (malondialdehyde). We found no clear evidence for blood glucose concentration being correlated with either antioxidant or lipid damage levels at the macroevolutionary scale, as opposed to the hypothesis postulating that high blood glucose levels entail oxidative costs. The only exception was the moderate evidence for species with a stronger stress-induced increase in blood glucose concentration evolving moderately lower investment into antioxidant defence (uric acid and glutathione). Neither baseline nor stress-induced glucose levels were associated with oxidative physiology. Our findings support the hypothesis that birds evolved adaptations preventing the (glyc)oxidative costs of high blood glucose observed at the within-species level. Such adaptations may explain the decoupled evolution of glycaemia and lifespan in birds and possibly the paradoxical combination of long lifespan and high blood glucose levels relative to mammals.


Assuntos
Hiperglicemia , Aves Canoras , Humanos , Animais , Antioxidantes/metabolismo , Glicemia , Aves Canoras/metabolismo , Ácido Úrico , Estresse Oxidativo/fisiologia , Glutationa , Glucose , Lipídeos , Peroxidação de Lipídeos/fisiologia , Mamíferos/metabolismo
2.
J Exp Biol ; 227(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563310

RESUMO

Resources are needed for growth, reproduction and survival, and organisms must trade off limited resources among competing processes. Nutritional availability in organisms is sensed and monitored by nutrient-sensing pathways that can trigger physiological changes or alter gene expression. Previous studies have proposed that one such signalling pathway, the mechanistic target of rapamycin (mTOR), underpins a form of adaptive plasticity when individuals encounter constraints in their energy budget. Despite the fundamental importance of this process in evolutionary biology, how nutritional limitation is regulated through the expression of genes governing this pathway and its consequential effects on fitness remain understudied, particularly in birds. We used dietary restriction to simulate resource depletion and examined its effects on body mass, reproduction and gene expression in Japanese quails (Coturnix japonica). Quails were subjected to feeding at 20%, 30% and 40% restriction levels or ad libitum for 2 weeks. All restricted groups exhibited reduced body mass, whereas reductions in the number and mass of eggs were observed only under more severe restrictions. Additionally, dietary restriction led to decreased expression of mTOR and insulin-like growth factor 1 (IGF1), whereas the ribosomal protein S6 kinase 1 (RPS6K1) and autophagy-related genes (ATG9A and ATG5) were upregulated. The pattern in which mTOR responded to restriction was similar to that for body mass. Regardless of the treatment, proportionally higher reproductive investment was associated with individual variation in mTOR expression. These findings reveal the connection between dietary intake and the expression of mTOR and related genes in this pathway.


Assuntos
Coturnix , Reprodução , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Coturnix/fisiologia , Coturnix/genética , Reprodução/fisiologia , Feminino , Masculino , Restrição Calórica , Dieta/veterinária
3.
Oecologia ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014256

RESUMO

The insulin-like growth factor 1 (IGF-1) is a pleiotropic hormone that regulates essential life-history traits and is known for its major contribution to determining individual ageing processes. High levels of IGF-1 have been linked to increased mortality and are hypothesised to cause oxidative stress. This effect has been observed in laboratory animals, but whether it pertains to wild vertebrates has not been tested. This is surprising because studying the mechanisms that shape individual differences in lifespan is important to understanding mortality patterns in populations of free-living animals. We tested this hypothesis under semi-natural conditions by simulating elevated IGF-1 levels in captive bearded reedlings, a songbird species with an exceptionally fast pace of life. We subcutaneously injected slow-release biodegradable microspheres loaded with IGF-1 and achieved a systemic 3.7-fold increase of the hormone within the natural range for at least 24 h. Oxidative damage to lipids showed marked sexual differences: it significantly increased the day after the manipulation in treated males and returned to baseline levels four days post-treatment, while no treatment effect was apparent in females. Although there was no overall difference in survival between the treatment groups, high initial (pre-treatment) IGF-1 and low post-treatment plasma malondialdehyde levels were associated with enhanced survival prospects in males. These results suggest that males may be more susceptible to IGF-1-induced oxidative stress than females and quickly restoring oxidative balance may be related to fitness. IGF-1 levels evolve under opposing selection forces, and natural variation in this hormone's level may reflect the outcome of individual optimization.

4.
Oecologia ; 203(1-2): 27-35, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37676486

RESUMO

Growth trajectories of young animals are intimately connected to their fitness prospects, but we have little knowledge of growth regulation mechanisms, particularly in the wild. Insulin-like growth factor 1 (IGF-1) is a central hormone in regulating resource allocation, with higher IGF-1 levels resulting in more growth. IGF-1 levels generally increase in conjunction with nutritional state, but whether IGF-1 levels are adjusted in response to current nutrient availability or to the nutrient availability integrated over a longer term is not well known. We tested for such effects by supplementary feeding the jackdaw (Corvus monedula) nestlings in experimentally reduced or enlarged broods with either water (control) or a food solution; these manipulations have long- and short-term effects on the nutritional state, respectively. Baseline plasma IGF-1 levels were higher in reduced broods. Food supplementation induced an increase in plasma IGF-1 levels measured one hour later, and this effect was significantly more substantial in nestlings in reduced broods. Changes in plasma IGF-1 levels increased with increased retention of the supplementary food, which was higher in reduced broods, explaining the stronger IGF-1 response. Thus, IGF-1 levels respond to short-term variations in the nutritional state, but this effect is amplified by longer-term variations in the nutritional state. We discuss our findings using a graphical model that integrates the results of the two treatments.


Assuntos
Fator de Crescimento Insulin-Like I , Passeriformes , Animais , Fator de Crescimento Insulin-Like I/metabolismo , Estado Nutricional
5.
Gen Comp Endocrinol ; 336: 114234, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791824

RESUMO

The administration of exogenous hormones emerged as an essential tool for field studies in endocrinology. However, working with wild animals remains challenging, because under field conditions not every available method meets the necessary requirements. Achieving a sustained elevation in hormone levels, while simultaneously minimising handling time and invasiveness of the procedure is a difficult task in field endocrinology. Facing this challenge, we have investigated the suitability of biocompatible polymeric microparticles, a novel method for drug-administration, as a tool to manipulate hormones in small songbirds. We chose the insulin-like growth factor-1 (IGF-1) as target hormone, because it receives great interest from the research community due to its important role in shaping life-history traits. Moreover, its short half-life and hydrophilic properties imply a major challenge in finding a suitable method to achieve a sustained, systemic long-term release. To study the release kinetics, we injected either IGF-1 loaded polylactic-co-glycolic acid (PLGA) microparticles or dispersion medium (control group) in the skin pocket of the interscapular region of captive bearded reedlings (Panurus biarmicus). We collected blood samples for 7 consecutive days plus an additional sampling period after two weeks and complemented these with an in vitro experiment. Our results show that in vitro, PLGA microparticles allowed a stable IGF-1 release for more than 15 days, following a burst release at the beginning of the measurement. In vivo, the initial burst was followed by a drop to still elevated levels in circulating IGF-1 until the effect vanished by 16 days post-treatment. This study is the first to describe the use of PLGA-microparticles as a novel tool for exogenous hormone administration in a small passerine. We suggest that this method is highly suitable to achieve the systemic long-term release of hydrophilic hormones with short half-life and reduces overall handling time, as it requires only one subcutaneous injection.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Fator de Crescimento Insulin-Like I , Hormônios
6.
Proc Biol Sci ; 288(1943): 20203092, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33499787

RESUMO

Social groups often consist of diverse phenotypes, including personality types, and this diversity is known to affect the functioning of the group as a whole. Social selection theory proposes that group composition (i.e. social environment) also influences the performance of individual group members. However, the effect of group behavioural composition on group members remains largely unexplored, and it is still contentious whether individuals benefit more in a social environment with homogeneous or diverse behavioural composition. We experimentally formed groups of house sparrows Passer domesticus with high and low diversity of personality (exploratory behaviour), and found that their physiological state (body condition, physiological stress and oxidative damage) improved with increasing group-level diversity of personality. These findings demonstrate that group personality composition affects the condition of group members and individuals benefit from social heterosis (i.e. associating with a diverse set of behavioural types). This aspect of the social life can play a key role in affiliation rules of social animals and might explain the evolutionary coexistence of different personalities in nature.


Assuntos
Personalidade , Pardais , Animais , Comportamento Animal , Evolução Biológica , Comportamento Exploratório , Estresse Fisiológico
7.
Horm Behav ; 132: 104979, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33878607

RESUMO

Understanding how vulnerable species are to new stressors, such as anthropogenic changes, is crucial for mitigating their potential negative consequences. Many studies have investigated species sensitivity to human disturbance by focusing on single behavioral or physiological parameters, such as flight initiation distance and glucocorticoid levels. However, little is known about the differential effect that modulating factors might have on behavioral versus physiological stress responses across species. This lack of knowledge make difficult to understand the relationship between both types of reactions, and thus to assess to what extent a behavioral reaction is representative of an internal physiological stress response or vice versa. We collected published data on bird flight initiation distances (FID) and corticosterone (CORT) responses, the two most frequently used indicators of stress reaction. We then investigated how spatio-temporal factors or species-specific characteristics relate to these behavioral and physiological stress responses, and potentially modify the relationship between them. Additionally, we evaluated the strength of the correlation between the two stress responses (behavioral and physiological). Our findings showed that FID and CORT responses were poorly correlated across species, and the lack of correlation was attributable to modulating factors (e.g. latitude and body mass) which influence behavior and physiology differently. These modulating factors, therefore, should be taken into consideration to better interpret FID and CORT responses in the context of species vulnerability to stress.


Assuntos
Corticosterona , Estresse Fisiológico , Animais , Comportamento Animal , Aves , Glucocorticoides , Humanos
8.
J Exp Biol ; 224(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34124749

RESUMO

Moulting is a crucial, yet often overlooked life-history stage in many animals, when they renew their integumental structures. This life-history stage is an energetically demanding somatic growth event that has particular importance in birds because feathers play a crucial role in flight, insulation and communication. Somatic growth processes are regulated by the evolutionarily conserved peptide hormone insulin-like growth factor 1 (IGF-1). However, the role of IGF-1 in feather growth remains unknown. In this study, we captured 41 juvenile free-living bearded reedlings (Panurus biarmicus) that had started their first complete moult and brought them into captivity. Then, we manipulated their circulating IGF-1 levels using poly-(lactic-co-glycolid acid) microparticles (microspheres) that provide a sustained release of IGF-1. The treatment increased IGF-1 levels but did not affect the feather growth rate. However, 2 weeks after the treatment, birds in the increased IGF-1 group were moulting more feathers simultaneously than the controls and were at a more advanced stage of moult. Birds with experimentally increased IGF-1 levels had better quality feathers (measured by a lower number of fault bars) than the controls. These results suggest that an increase in IGF-1 does not speed up feather growth, but may alter moult intensity by initiating the renewal of several feathers simultaneously. This may shorten the overall moulting time but may imply costs in terms of IGF-1-induced oxidative stress.


Assuntos
Plumas , Passeriformes , Animais , Fator de Crescimento Insulin-Like I , Muda
9.
Biol Lett ; 16(1): 20190733, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31937214

RESUMO

Life-history theory predicts that, to optimize their fitness, individuals should increase their reproductive effort as their residual reproductive value decreases. Accordingly, several studies have shown that individuals downregulate their glucocorticoid stress response (a proxy of reproductive investment in vertebrates) as they age, and as the subsequent reproductive value decreases. However, and surprisingly, results appear inconsistent, suggesting that the environmental context or the individual state may affect the relationship between age and reproductive effort. Here, we tested for the first time this hypothesis, and more specifically, whether this attenuation of the corticosterone stress response with advancing age depends on the energetic status of individuals. We compared the influence of age on the corticosterone stress response between fasting and non-fasting breeding snow petrels (Pagodroma nivea), an extremely long-lived bird. As expected, we found that the corticosterone stress response was attenuated in old petrels, but only when they were not fasting. Interestingly, this pattern was not apparent in fasting petrels, suggesting that old birds downregulate their corticosterone stress response and increase their parental investment only when they are in good body condition. At the ultimate level, old individuals may maintain a strong corticosterone stress response when fasting because the survival costs of increased stress resistance and parental effort might then outweigh their reproductive benefits.


Assuntos
Aves , Corticosterona , Estresse Fisiológico , Animais , Humanos , Reprodução
10.
Parasitology ; 147(1): 87-95, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31455438

RESUMO

Avian malaria (caused by Plasmodium spp.) and avian malaria-like infections (caused by Haemoproteus spp.) are widespread and can seriously affect the health of their bird hosts, especially of immunologically naïve individuals. Therefore, these parasites have long been in the focus of bird-parasite studies. However, the species richness and diversity of these protozoan species have only been revealed since the use of molecular techniques. Diversity and prevalence of these parasites among different bird species and even between populations of a species show a large variation. Here, we investigated prevalence of avian malaria and avian malaria-like parasites in two distant populations of a non-migratory wetland specialist passerine, the bearded reedling (Panurus biarmicus). While previous studies have shown that reed-dwelling bird species often carry various blood parasite lineages and the presence of the vectors transmitting Plasmodium and Haemoproteus species has been confirmed from our study sites, prevalence of these parasites was extremely low in our populations. This may either suggest that bearded reedlings may avoid or quickly clear these infections, or these parasites cause high mortality in this species. The remarkably low prevalence of infection in this species is consistent with earlier studies and makes bearded reedlings a possible model organism for investigating the genetic or behavioural adaptations of parasite resistance.


Assuntos
Malária Aviária/epidemiologia , Passeriformes/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Animais , Haemosporida , Plasmodium , Prevalência , Infecções Protozoárias em Animais/parasitologia , Áreas Alagadas
11.
Proc Biol Sci ; 286(1898): 20190018, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30862285

RESUMO

As species shift their ranges and phenology to cope with climate change, many are left without a ready supply of their preferred food source during critical life stages. Food shortages are often assumed to be driven by reduced total food abundance, but here we propose that climate change may cause short-term food shortages for foraging specialists without affecting overall food availability. We frame this hypothesis around the special case of birds that forage on flying insects for whom effects mediated by their shared food resource have been proposed to cause avian aerial insectivores' decline worldwide. Flying insects are inactive during cold, wet or windy conditions, effectively reducing food availability to zero even if insect abundance remains otherwise unchanged. Using long-term monitoring data from a declining population of tree swallows ( Tachycineta bicolor), we show that nestlings' body mass declined substantially from 1977 to 2017. In 2017, nestlings had lower body mass if it rained during the preceding 3 days, though females increased provisioning rates, potentially in an attempt to compensate. Adult body mass, particularly that of the males, has also declined over the long-term study. Mean rainfall during the nestling period has increased by 9.3 ± 0.3 mm decade-1, potentially explaining declining nestling body mass and population declines. Therefore, we suggest that reduced food availability, distinct from food abundance, may be an important and previously overlooked consequence of climate change, which could be affecting populations of species that specialize on foraging on flying insects.


Assuntos
Reprodução , Andorinhas/fisiologia , Tempo (Meteorologia) , Animais , Feminino , Masculino , Ontário , Dinâmica Populacional , Chuva , Estações do Ano , Andorinhas/crescimento & desenvolvimento
12.
Zoolog Sci ; 34(4): 318-325, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28770685

RESUMO

Insulin/insulin-like growth factor signaling (IIS) is thought to be a central mediator of life history traits, but the generality of its role is not clear. Here, we investigated mRNA expression levels of three insulin-like peptide genes, the insulin-like receptor htk7, as well as several antioxidant genes, and the heat-shock protein hsp70 in the freshwater cnidarian Hydra vulgaris. Hydra polyps were exposed to a combination of different levels of food and perceived population density to manipulate life history traits (asexual reproduction and oxidative stress tolerance). We found that stress tolerance and the rate of asexual reproduction increased with food, and that these two effects were in significant interaction. Exposing animals to high perceived density resulted in increased stress tolerance or reduced reproduction only on lower food levels, but not on high food. The insulin-like receptor htk7 and the antioxidant gene catalase were significantly upregulated in the high density treatments. However, the expression level of insulin-like peptide genes, most antioxidant genes, and hsp70 were not affected by the experimental treatments. The higher expression level of htk7 may suggest that animals maintain a higher level of preparedness for insulin-like ligands at high population densities. However, the lack of difference between food levels suggests that IIS is not involved in regulating asexual reproduction and stress tolerance in hydra, or that its role is more subtle than a simple model of life history regulation would suggest.


Assuntos
Hydra/fisiologia , Insulina/fisiologia , Peptídeos/metabolismo , Transdução de Sinais/fisiologia , Animais , Comportamento Alimentar , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Peptídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico
13.
Biol Lett ; 11(7)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26179799

RESUMO

A crucial problem for every organism is how to allocate energy between competing life-history components. The optimal allocation decision is often state-dependent and mediated by hormones. Here, we investigated how age, a major state variable affects individuals' hormonal response to a standardized stressor: a trait that may reflect allocation between self-maintenance and reproduction. We caught free-living house sparrows and measured their hormonal (corticosterone) response to capture stress in consecutive years. Using a long-term ringing dataset, we determined the age of the birds, and we partitioned the variation into within- and among-individual age components to investigate the effects of plasticity versus selection or gene flow, respectively, on the stress response. We found large among-individual variation in the birds' hormone profiles, but overall, birds responded less strongly to capture stress as they grew older. These results suggest that stress responsiveness is a plastic trait that may vary within individuals in an adaptive manner, and natural selection may act on the reaction norms producing optimal phenotypic response in the actual environment and life-history stage.


Assuntos
Corticosterona/sangue , Pardais/fisiologia , Estresse Fisiológico , Fatores Etários , Animais , França , Pardais/sangue
14.
Gen Comp Endocrinol ; 219: 165-72, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25796954

RESUMO

High levels of environmental contaminants such as polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and mercury (Hg) have been reported in some Arctic top predators such as seabirds. Chronic exposure to these contaminants might alter the response to environmental changes through interference with the regulation of corticosterone (CORT), a glucocorticoid stress hormone released by the hypothalamo-pituitary-adrenal (HPA) axis. Positive and negative relationships between CORT and environmental contaminants have been reported in polar seabirds. However, patterns appear inconclusive and it is difficult to attribute these relationships to a dysfunction of the HPA axis or to other confounding effects. In order to explore the relationships between the HPA axis activity and contaminants, we tested whether different aspects of the HPA axis of an Arctic seabird, the black-legged kittiwakes Rissa tridactyla, would be related to blood Hg, PCB and OCP concentrations. Male kittiwakes were caught during the incubation period in Svalbard and were subjected to different stress series: (1) a capture-restraint stress protocol, (2) an injection of dexamethasone (DEX) that enabled to test the efficacy of the HPA negative feedback and (3) an injection of adrenocorticotropic hormone (ACTH) that informed on the adrenal responsiveness. The HPA axis activity was unrelated to ΣOCPs and Hg. However, birds with high concentrations of ΣPCBs released more CORT after the ACTH injection. It is suggested that ΣPCBs may increase the number of ACTH-receptors on the adrenals. Additionally, hatching date was delayed in males with higher concentrations of ΣPCBs and ΣOCPs. This study gives new evidence that PCBs and adrenal activity may be related. Thus high PCB burden may make individuals more prone to other stressors such as ongoing climate change.


Assuntos
Charadriiformes/sangue , Corticosterona/sangue , Dexametasona/farmacologia , Bifenilos Policlorados/efeitos adversos , Glândulas Suprarrenais , Hormônio Adrenocorticotrópico/sangue , Animais , Regiões Árticas , Cruzamento , Poluição Ambiental , Feminino , Masculino , Reprodução/efeitos dos fármacos
15.
J Anim Ecol ; 83(4): 876-87, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24286484

RESUMO

Plasticity in life-history characteristics can influence many ecological and evolutionary phenomena, including how invading organisms cope with novel conditions in new locations or how environmental change affects organisms in native locations. Variation in reaction norm attributes is a critical element to understanding plasticity in life history, yet we know relatively little about the ways in which reaction norms vary within and among populations. We amassed data on clutch size from marked females in eight populations of house sparrows (Passer domesticus) from North America and Europe. We exploited repeated measures of clutch size to assess both the extent of within-individual phenotypic plasticity and among-individual variation and to test alternative hypotheses about the underlying causes of reaction norm shape, particularly the decline in clutch size with date. Across all populations, females of this multibrooded species altered their clutch size with respect to date, attempt order, and the interaction of date and order, producing a reaction norm in multidimensional environmental space. The reaction norm fits that predicted by a model in which optimal clutch size is driven by a decline with date hatched in the ability of offspring to recruit. Our results do not fit those predicted for other proposed causes of a seasonal decline in clutch size. We also found significant differences between populations in response to date and the date by attempt order interaction. We tested the prediction that the relationship with date should be increasingly negative as breeding season becomes shorter but found steeper declines in clutch size with date in populations with longer seasons, contrary to the prediction. Populations also differed in the level of among-individual variation in reaction norm intercept, but we found no evidence of among-individual variation in reaction norm slope. We show that complex reaction norms in life-history characters exhibit within- and among-population variance. The nature of this variance is only partially consistent with current life-history theory and stimulates expansions of such theory to accommodate complexities in adaptive life history.


Assuntos
Tamanho da Ninhada , Reprodução , Seleção Genética , Pardais/fisiologia , Animais , Evolução Biológica , Europa (Continente) , Feminino , Geografia , América do Norte , Pardais/genética
16.
Sci Total Environ ; 946: 174525, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38972420

RESUMO

Rapid urbanization of habitats alters the physical, chemical, auditory, and photic environments of human and wild animal inhabitants. One of the most widespread transformations is caused by artificial light at night (ALAN), but it is not clear the extent to which individuals acclimate to such rapid environmental change. Here, we tested the hypothesis that urban birds show increased resistance to harmful behavioral, parasitological, and physiological effects of ALAN. We captured house finches (Haemorhous mexicanus), a bird that commonly inhabits cities and their natural surroundings, from two urban and two rural sites in Phoenix, Arizona, USA, which differ by both degree of urbanization and by multiple orders of magnitude in ALAN intensity, and placed them in a common garden laboratory setting. We exposed half of the birds from each habitat type to ecologically relevant levels of night lighting during the subjective night and found that, while ALAN exposure reduced sleep in both urban and rural birds, ALAN-exposed urban birds were able to sleep longer than ALAN-exposed rural birds. We also found that ALAN exposure increased the proliferation rate of an intestinal coccidian parasite (Isospora spp.) in both urban and rural birds, but that the rate of proliferation was lower in urban relative to rural birds. We found that night lighting suppressed titers of feather corticosterone in rural but not urban birds, suggesting that light impairs HPA function through chronic stress or suppression of its circadian rhythmicity, and that urban birds were again resistant to this effect. Mediation analyses show that the effect of ALAN exposure in rural birds was significantly sleep-mediated for feather corticosterone but not coccidiosis, suggesting a diversity of mechanisms by which ALAN alters physiology. We contribute further evidence that animals from night-lit habitats can develop resistance to ALAN and its detrimental effects.


Assuntos
Tentilhões , Iluminação , Urbanização , Animais , Tentilhões/fisiologia , Arizona , Cidades , Luz , Ecossistema
17.
J Comp Physiol B ; 194(2): 179-189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520538

RESUMO

Embryonic development is one of the most sensitive and critical stages when maternal effects may influence the offspring's phenotype. In birds and other oviparous species, embryonic development is confined to the eggs, therefore females must deposit resources into the eggs to prepare the offspring for the prevailing post-natal conditions. However, the mechanisms of such phenotypic adjustments remain poorly understood. We simulated a maternal nutritional transfer by injecting 1 mg of L-methionine solution into Japanese quail eggs before the onset of incubation. The increase in early methionine concentration in eggs activated the insulin/insulin-like signalling and mechanistic target of rapamycin (IIS/mTOR) signalling pathways and affected post-natal developmental trajectories. Chicks from methionine-supplemented eggs had higher expression of liver IGF1 and mTOR genes at hatching but were similar in size, and the phenotypic effects of increased growth became apparent only a week later and remained up to three weeks. Circulating levels of insulin-like growth factor-1 (IGF-1) and expression of ribosomal protein serine 6 kinase 1 (RPS6K1), the mTOR downstream effector, were elevated only three weeks after hatching. These results show that specific nutritional cues may have phenotypic programming effects by sequentially activating specific nutrient-sensing pathways and achieving transgenerational phenotypic plasticity.


Assuntos
Coturnix , Fator de Crescimento Insulin-Like I , Metionina , Serina-Treonina Quinases TOR , Animais , Metionina/administração & dosagem , Metionina/farmacologia , Coturnix/crescimento & desenvolvimento , Coturnix/embriologia , Coturnix/metabolismo , Coturnix/genética , Feminino , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/genética , Transdução de Sinais , Fígado/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Insulina/sangue , Insulina/metabolismo , Embrião não Mamífero
18.
Sci Rep ; 14(1): 8314, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594358

RESUMO

Limited resources affect an organism's physiology through the conserved metabolic pathway, the mechanistic target of rapamycin (mTOR). Males and females often react differently to nutritional limitation, but whether it leads to differential mTOR pathway expression remains unknown. Recently, we found that dietary restriction (DR) induced significant changes in the expression of mTOR pathway genes in female Japanese quails (Coturnix japonica). We simultaneously exposed 32 male and female Japanese quails to either 20%, 30%, 40% restriction or ad libitum feeding for 14 days and determined the expression of six key genes of the mTOR pathway in the liver to investigate sex differences in the expression patterns. We found that DR significantly reduced body mass, albeit the effect was milder in males compared to females. We observed sex-specific liver gene expression. DR downregulated mTOR expression more in females than in males. Under moderate DR, ATG9A and RPS6K1 expressions were increased more in males than in females. Like females, body mass in males was correlated positively with mTOR and IGF1, but negatively with ATG9A and RS6K1 expressions. Our findings highlight that sexes may cope with nutritional deficits differently and emphasise the importance of considering sexual differences in studies of dietary restriction.


Assuntos
Coturnix , Sirolimo , Animais , Feminino , Masculino , Coturnix/metabolismo , Sirolimo/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
19.
Ecol Evol ; 14(5): e11405, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799393

RESUMO

Nutritional limitation is a common phenomenon in nature that leads to trade-offs among processes competing for limited resources. These trade-offs are mediated by changes in physiological traits such as growth factors and circulating lipids. However, studies addressing the sex-specific effect of nutritional deficiency on these physiological variables are limited in birds. We used dietary restriction to mimic the depletion of resources to various degrees and investigated sex-specific effects on circulating levels of insulin-like growth factor 1 (IGF-1) and triglycerides in Japanese quails (Coturnix japonica) subjected to ad libitum, 20%, 30% or 40% restriction of their daily requirement, for 2 weeks. We also explored the association of both physiological variables with body mass and egg production. While dietary restriction showed no effects on circulating IGF-1, this hormone exhibited a marked sexual difference, with females having 64.7% higher IGF-1 levels than males. Dietary restriction significantly reduced plasma triglyceride levels in both sexes. Females showed more than six-fold higher triglyceride levels than males. Triglyceride levels were positively associated with body mass in females while showed not association in males. Overall, our findings revealed sex-specific expression of physiological variables under dietary restriction conditions, which coincide with body size.

20.
Proc Biol Sci ; 280(1770): 20131734, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24026820

RESUMO

Vertebrates respond to unpredictable noxious environmental stimuli by increasing secretion of glucocorticoids (CORT). Although this hormonal stress response is adaptive, high levels of CORT may induce significant costs if stressful situations are frequent. Thus, alternative coping mechanisms that help buffer individuals against environmental stressors may be selected for when the costs of CORT levels are elevated. By allowing individuals to identify, anticipate and cope with the stressful circumstances, cognition may enable stress-specific behavioural coping. Although there is evidence that behavioural responses allow animals to cope with stressful situations, it is unclear whether or not cognition reduces investment in the neuroendocrine stress response. Here, we report that in birds, species with larger brains relative to their body size show lower baseline and peak CORT levels than species with smaller brains. This relationship is consistent across life-history stages, and cannot be accounted for by differences in life history and geographical latitude. Because a large brain is a major feature of birds that base their lifetime in learning new things, our results support the hypothesis that enhanced cognition represents a general alternative to the neuroendocrine stress response.


Assuntos
Aves/anatomia & histologia , Aves/fisiologia , Encéfalo/anatomia & histologia , Cognição , Corticosterona/metabolismo , Glucocorticoides/metabolismo , Animais , Teorema de Bayes , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA