Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 20562, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232030

RESUMO

The search for biomarkers for the early diagnosis of neurodegenerative diseases is a growing area. Numerous investigations are exploring minimally invasive and cost-effective biomarkers, with the detection of phosphorylated Tau (pTau) protein emerging as one of the most promising fields. pTau is the main component of the paired helical filaments found in the brains of Alzheimer's disease cases and serves as a precursor in the formation of neurofibrillary tangles (NFTs). Recent research has revealed that analysis of p-Tau181, p-Tau217 and p-Tau231 in blood may be an option for detecting the preclinical stage of Alzheimer's disease. In this study, we have analyzed the values of pTau 181 in the serum of Syrian hamsters during hibernation. Naturally, over the course of hibernation, these animals exhibit a reversible accumulation of pTau in the brain tissue, which rapidly disappears upon awakening. A biosensing system based on the interferometric optical detection method was used to measure the concentration of pTau181 protein in serum samples from Syrian hamsters. This method eliminates the matrix effect and amplifies the signal obtained by using silicon dioxide nanoparticles (SiO2 NPs) biofunctionalized with the αpTau181 antibody. Our results indicate a substantial increase in the serum concentration of pTau in threonine-181 during hibernation, which disappears completely 2-3 h after awakening. Investigating the mechanism by which pTau protein appears in the blood non-pathologically may enhance current diagnostic techniques. Furthermore, since this process is reversible, and no tangles are detected in the brains of hibernating hamsters, additional analysis may contribute to the discovery of improved biomarkers. Additionally, exploring drugs targeting pTau to prevent the formation of tangles or studying the outcomes of any pTau-targeted treatment could be valuable.


Assuntos
Hibernação , Mesocricetus , Proteínas tau , Animais , Proteínas tau/metabolismo , Proteínas tau/sangue , Fosforilação , Cricetinae , Biomarcadores/sangue , Nível de Alerta/fisiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/sangue , Masculino , Encéfalo/metabolismo
2.
Neurologia (Engl Ed) ; 33(4): 211-223, 2018 May.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-27570180

RESUMO

INTRODUCTION: Cerebrospinal fluid (CSF) from amyotrophic lateral sclerosis (ALS) patients induces cytotoxic effects in in vitro cultured motor neurons. MATERIAL AND METHODS: We selected CSF with previously reported cytotoxic effects from 32 ALS patients. Twenty-eight adult male rats were intracerebroventricularly implanted with osmotic mini-pumps and divided into 3 groups: 9 rats injected with CSF from non-ALS patients, 15 rats injected with cytotoxic ALS-CSF, and 4 rats injected with a physiological saline solution. CSF was intracerebroventricularly and continuously infused for periods of 20 or 43days after implantation. We conducted clinical assessments and electromyographic examinations, and histological analyses were conducted in rats euthanised 20, 45, and 82days after surgery. RESULTS: Immunohistochemical studies revealed tissue damage with similar characteristics to those found in the sporadic forms of ALS, such as overexpression of cystatinC, transferrin, and TDP-43 protein in the cytoplasm. The earliest changes observed seemed to play a protective role due to the overexpression of peripherin, AKTpan, AKTphospho, and metallothioneins; this expression had diminished by the time we analysed rats euthanised on day 82, when an increase in apoptosis was observed. The first cellular changes identified were activated microglia followed by astrogliosis and overexpression of GFAP and S100B proteins. CONCLUSION: Our data suggest that ALS could spread through CSF and that intracerebroventricular administration of cytotoxic ALS-CSF provokes changes similar to those found in sporadic forms of the disease.


Assuntos
Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Encéfalo/patologia , Líquido Cefalorraquidiano/metabolismo , Infusões Intraventriculares , Medula Espinal/patologia , Adulto , Esclerose Lateral Amiotrófica/patologia , Animais , Células Cultivadas , Líquido Cefalorraquidiano/química , Citotoxinas/farmacologia , Modelos Animais de Doenças , Humanos , Masculino , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA