RESUMO
The advent of high-throughput sequencing has led to the discovery of a considerable diversity of microbial eukaryotes in aquatic ecosystems, nevertheless, their function and contribution to the trophic food web functioning remain poorly characterized especially in freshwater ecosystems. Based on metabarcoding data obtained from a meromictic lake ecosystem (Pavin, France), we performed a morpho-physio-phenological traits-based approach to infer functional groups of microbial eukaryotes. Metatranscriptomic data were also analysed to assess the metabolic potential of these groups across the diel cycle, size fraction, sampling depth, and periods. Our analysis highlights a huge microbial eukaryotic diversity in the monimolimnion characterized by numerous saprotrophs expressing transcripts related to sulfur and nitrate metabolism as well as dissolved and particulate organic matter degradation. We also describe strong seasonal variations of microbial eukaryotes in the mixolimnion, especially for parasites and mixoplankton. It appears that the water mixing (occurring during spring and autumn) which benefits photosynthetic host communities also promotes parasitic fungi dissemination and over-expression of genes involved in the zoospore phototaxis and stage transition in the parasitic cycle. Mixoplanktonic haptophytes over-expressing photosynthesis-, endocytosis- and phagosome-linked genes under nutrient limitation also suggest that phagotrophy may provide them an advantage over non-phagotrophic phytoplankton.
Assuntos
Ecossistema , Lagos , Lagos/microbiologia , Fungos/genética , Cadeia Alimentar , FitoplânctonRESUMO
Microsporidia are a large group of obligate intracellular eukaryotic parasites. Recent studies suggest that their diversity can be huge in freshwater lake ecosystems especially in the < 150-µm size fraction. However, little is known about their hosts and therefore their impact on the trophic food web functioning. In this study, single cell analysis and fluorescence microscopy were used to detect new host-parasite association within rotifer communities in lake Aydat (France). Our analysis showed the existence of a potential new species belonging to the Crispospora genus able of infecting the rotifer Kellicottia with a high prevalence (42.5%) suggesting that Microsporidia could have a great impact on the rotifer populations' regulation in lakes.
Assuntos
Microsporídios , Microsporídios/fisiologia , Lagos/parasitologia , Ecossistema , Cadeia Alimentar , Análise de Célula ÚnicaRESUMO
Microsporidia are a large group of obligate intracellular eukaryotic parasites related to Fungi. Recent studies suggest that their diversity has been greatly underestimated and little is known about their hosts other than metazoans, and thus about their impact on the communities at the base of the food web. In this work, we therefore studied the diversity of Microsporidia over one year and identified potential new hosts in small-sized fractions (<150 µm) in a lake ecosystem using a metabarcoding approach coupled with co-occurrence networks and tyramide signal amplification-fluorescent in situ hybridization. Our analysis shows a great Microsporidia diversity (1 472 OTUs), with an important part of this diversity being unknown. Temporal variations of this diversity have been observed, which might follow temporal variations of their potential hosts such as protists and microzooplankton. New hosts among them were identified as well as associations with phytoplankton. Indeed, repeated infections were observed in Kellicottia (rotifers) with a prevalence of 38% (infected individuals). Microsporidia inside a Stentor (ciliate) were also observed. Finally, potential infections of the diatom Asterionella were identified (prevalence <0.1%). The microsporidian host spectrum could be therefore even more important than previously described, and their role in the functioning of lake ecosystems is undoubtedly largely unknown.
Assuntos
Ecossistema , Microsporídios , Eucariotos , Interações Hospedeiro-Parasita , Humanos , Hibridização in Situ Fluorescente , Lagos , Microsporídios/genética , FilogeniaRESUMO
Microsporidia are obligate intracellular eukaryotic parasites known to parasitize many species of the animal kingdom as well as some protists. However, their diversity is underestimated, in part as a consequence of the failure of 'universal' primers to detect them in metabarcoding studies. Besides, due to the inconsistency between taxonomy and phylogenetic data, available databases may assign incorrectly sequences obtained with high-throughput sequencing. In this work, we developed a comprehensive reference database which positions microsporidian SSU rRNA gene sequences within a coherent ranked phylogenetic framework. We used this phylogenetic framework to study the microsporidian diversity in lacustrine ecosystems, focusing on < 150 µm planktonic size fractions. Our analysis shows a high diversity of Microsporidia, with the identification of 1531 OTUs distributed within seven clades, of which 76% were affiliated to clade IV2 and 20% to clade I (nomenclature presented hereby). About a quarter of the obtained sequences shared less than 85% identity to the closest known species, which might represent undescribed genera or families infecting small hosts. Variations in the abundance of Microsporidia were recorded between the two lakes sampled and across the sampling period, which might be explained by spatio-temporal variations of their potential hosts such as microeukaryotes and metazooplankton.
Assuntos
Lagos , Microsporídios , Animais , Ecossistema , Eucariotos , Humanos , Microsporídios/genética , FilogeniaRESUMO
The diversity and composition of photosynthetic picoeukaryotes (PPEs) in two large shallow lakes in China (Lake Taihu and Lake Chaohu) were investigated from flow cytometry sorted samples using Miseq high-throughput sequencing. We collected 65 samples covering different regions of the two lakes over four seasons to unveil spatial and temporal patterns of PPEs community composition. The use of flow cytometry sorting largely improved the efficiency of detecting PPEs sequences and over 70% of the retrieved reads belonged to PPEs. Chlorophyta and Bacillariophyta dominated PPEs in most of the samples. A distinct but complex seasonality of PPEs composition emerged at the OTUs level. NGS-based Miseq sequencing facilitates an in-depth view of numerous rare OTUs. Nearly 80% of the PPEs OTUs were rare and lots of them were detected only in one season, whereas most of the abundant OTUs were frequently detected in all seasons but only changed in relative abundances. Besides, a close relative of the marine PPEs species Ostreococcus sp. (OTU_1144, 99% identity) was discovered in freshwater systems for the first time and was abundant especially in winter. The diversity and community composition of PPEs were more dependent on season rather than sampling sites. Temperature, phycocyanin and NO3 N concentrations in Lake Taihu explained the PPE composition variations, whereas in Lake Chaohu TN/TP ratios, temperature, pH and nephelometric turbidity units (NTU) seemed to be the most important factors. In addition, a great number of OTUs belong to nonpigmented picoeukaryotes, especially Chytridiomycota, Perkinsozoa, Ciliophora and Cercozoa, which are known to include algae parasites as well as predators. The results of mantel test also showed that the community of photosynthetic and nonpigmented picoeukaryotes were significantly correlated in both lakes.
Assuntos
Clorófitas/classificação , Diatomáceas/classificação , Lagos/química , Lagos/parasitologia , China , Clorófitas/fisiologia , Diatomáceas/fisiologia , Citometria de Fluxo , Nitratos/análise , Fotossíntese/fisiologia , Ficocianina/análise , Estações do Ano , TemperaturaRESUMO
The permanently anoxic waters in meromictic lakes create suitable niches for the growth of bacteria using sulphur metabolisms like sulphur oxidation. In Lake Pavin, the anoxic water mass hosts an active cryptic sulphur cycle that interacts narrowly with iron cycling, however the metabolisms of the microorganisms involved are poorly known. Here we combined metagenomics, single-cell genomics, and pan-genomics to further expand our understanding of the bacteria and the corresponding metabolisms involved in sulphur oxidation in this ferruginous sulphide- and sulphate-poor meromictic lake. We highlighted two new species within the genus Sulfurimonas that belong to a novel clade of chemotrophic sulphur oxidisers exclusive to freshwaters. We moreover conclude that this genus holds a key-role not only in limiting sulphide accumulation in the upper part of the anoxic layer but also constraining carbon, phosphate and iron cycling.
Assuntos
Bactérias , Lagos , Ferro/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo , GenômicaRESUMO
Telonemia are one of the oldest identified marine protists that for most part of their history have been recognized as a distinct incertae sedis lineage. Today, their evolutionary proximity to the SAR supergroup (Stramenopiles, Alveolates, and Rhizaria) is firmly established. However, their ecological distribution and importance as a natural predatory flagellate, especially in freshwater food webs, still remain unclear. To unravel the distribution and diversity of the phylum Telonemia in freshwater habitats, we examined over a thousand freshwater metagenomes from all over the world. In addition, to directly quantify absolute abundances, we analyzed 407 samples from 97 lakes and reservoirs using Catalyzed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH). We recovered Telonemia 18S rRNA gene sequences from hundreds of metagenomic samples from a wide variety of habitats, indicating a global distribution of this phylum. However, even after this extensive sampling, our phylogenetic analysis did not reveal any new major clades, suggesting current molecular surveys are near to capturing the full diversity within this group. We observed excellent concordance between CARD-FISH analyses and estimates of abundances from metagenomes. Both approaches suggest that Telonemia are largely absent from shallow lakes and prefer to inhabit the colder hypolimnion of lakes and reservoirs in the Northern Hemisphere, where they frequently bloom, reaching 10%-20% of the total heterotrophic flagellate population, making them important predatory flagellates in the freshwater food web.
Assuntos
Água Doce , Hibridização in Situ Fluorescente , Filogenia , RNA Ribossômico 18S , Água Doce/microbiologia , Água Doce/parasitologia , RNA Ribossômico 18S/genética , Metagenoma , Lagos/microbiologia , Lagos/parasitologia , Biodiversidade , MetagenômicaRESUMO
Freshwater is a critical resource for human survival but severely threatened by anthropogenic activities and climate change. These changes strongly impact the abundance and diversity of the microbial communities which are key players in the functioning of these aquatic ecosystems. Although widely documented since the emergence of high-throughput sequencing approaches, the information on these natural microbial communities is scattered among thousands of publications and it is therefore difficult to investigate the temporal dynamics and the spatial distribution of microbial taxa within or across ecosystems. To fill this gap and in the FAIR principles context we built a manually curated and standardized microbial freshwater -omics database (FreshOmics). Based on recognized ontologies (ENVO, MIMICS, GO, ISO), FreshOmics describes 29 different types of freshwater ecosystems and uses standardized attributes to depict biological samples, sequencing protocols and article attributes for more than 2487 geographical locations across 71 countries around the world. The database contains 24,808 sequence identifiers (i.e., Run_Id / Exp_ID, mainly from SRA/DDBJ SRA/ENA, GSA and MG-RAST repositories) covering all sequence-based -omics approaches used to investigate bacteria, archaea, microbial eukaryotes, and viruses. Therefore, FreshOmics allows accurate and comprehensive analyses of microbial communities to answer questions related to their roles in freshwater ecosystems functioning and resilience, especially through meta-analysis studies. This collection also highlights different sort of errors in published works (e.g., wrong coordinates, sample type, material, spelling).
Assuntos
Água Doce , Microbiota , Humanos , Microbiota/genética , Bactérias/genética , Archaea/genética , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
BACKGROUND: Small size eukaryotes play a fundamental role in the functioning of coastal ecosystems, however, the way in which these micro-organisms respond to combined effects of water temperature, UVB radiations (UVBR) and nutrient availability is still poorly investigated. RESULTS: We coupled molecular tools (18S rRNA gene sequencing and fingerprinting) with microscope-based identification and counting to experimentally investigate the short-term responses of small eukaryotes (<6 µm; from a coastal Mediterranean lagoon) to a warming treatment (+3°C) and UVB radiation increases (+20%) at two different nutrient levels. Interestingly, the increase in temperature resulted in higher pigmented eukaryotes abundances and in community structure changes clearly illustrated by molecular analyses. For most of the phylogenetic groups, some rearrangements occurred at the OTUs level even when their relative proportion (microscope counting) did not change significantly. Temperature explained almost 20% of the total variance of the small eukaryote community structure (while UVB explained only 8.4%). However, complex cumulative effects were detected. Some antagonistic or non additive effects were detected between temperature and nutrients, especially for Dinophyceae and Cryptophyceae. CONCLUSIONS: This multifactorial experiment highlights the potential impacts, over short time scales, of changing environmental factors on the structure of various functional groups like small primary producers, parasites and saprotrophs which, in response, can modify energy flow in the planktonic food webs.
Assuntos
Biodiversidade , Eucariotos/crescimento & desenvolvimento , Eucariotos/efeitos da radiação , Raios Ultravioleta , DNA Ribossômico/química , DNA Ribossômico/genética , Eucariotos/citologia , Eucariotos/genética , Região do Mediterrâneo , Microscopia , Dados de Sequência Molecular , RNA Ribossômico 18S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , TemperaturaRESUMO
Photosynthetic microbes are omnipresent in land and water. While they critically influence primary productivity in aquatic systems, their importance in terrestrial ecosystems remains largely overlooked. In terrestrial systems, photoautotrophs occur in a variety of habitats, such as sub-surface soils, exposed rocks, and bryophytes. Here, we study photosynthetic microbial communities associated with bryophytes from a boreal peatland and a tropical rainforest. We interrogate their contribution to bryophyte C uptake and identify the main drivers of that contribution. We found that photosynthetic microbes take up twice more C in the boreal peatland (~4.4 mg CO2.h-1.m-2) than in the tropical rainforest (~2.4 mg CO2.h-1.m-2), which corresponded to an average contribution of 4% and 2% of the bryophyte C uptake, respectively. Our findings revealed that such patterns were driven by the proportion of photosynthetic protists in the moss microbiomes. Low moss water content and light conditions were not favourable to the development of photosynthetic protists in the tropical rainforest, which indirectly reduced the overall photosynthetic microbial C uptake. Our investigations clearly show that photosynthetic microbes associated with bryophyte effectively contribute to moss C uptake despite species turnover. Terrestrial photosynthetic microbes clearly have the capacity to take up atmospheric C in bryophytes living under various environmental conditions, and therefore potentially support rates of ecosystem-level net C exchanges with the atmosphere.
RESUMO
Photosynthetic picoeukaryotes (PPEs), comprising organisms < 3 mum in size, are important primary producers in marine food webs and include representatives from all known algal lineages. Little is known, however, regarding the composition and distribution of PPE communities, particularly at large spatial scales, or in relation to the underlying biotic and abiotic factors that influence this structure. Here, we analysed PPE community structure along a transect in the South East Pacific Ocean (BIOSOPE cruise) that encompassed a large trophic gradient, including hyper-oligotrophic waters in the South Pacific Gyre (SPG), considered to be some of the 'clearest' natural waters on Earth. Using dot blot hybridizations with 16S rRNA oligonucleotide probes, we established that the PPE community was dominated by members of the classes Prymnesiophyceae and Chrysophyceae throughout the transect. Moreover, clone library construction followed by phylogenetic analysis of sequenced clones revealed several novel 16S rRNA gene lineages, including new clades of prymnesiophytes (designated Prym 16S-III) and prasinophytes (Pras 16S-VIII). Pras 16S-VIII was found at all five stations at which clone libraries were constructed, representing a range of trophic conditions, including the South Pacific Gyre, suggesting members of this clade have a broad distribution in this part of the South East Pacific at least. In contrast, Prym 16S-III sequences were largely restricted to oligotrophic stations of the SPG. Subsequent multivariate statistical analyses showed that, within the measured factors, chemical and biological factors seem to influence PPE community structure more than physical parameters. However, more than 50% of the variation in distribution of PPE classes remained unexplained.
Assuntos
Clorofila/análise , Eucariotos/classificação , Água do Mar/química , Biodiversidade , Clorofila A , Ecossistema , Eucariotos/genética , Cadeia Alimentar , Geografia , Immunoblotting , Oceano Pacífico , Fotossíntese , FilogeniaRESUMO
The seasonal dynamics of the small eukaryotic fraction (cell diameter, 0.2 to 5 microm) was investigated in a mesotrophic lake by tyramide signal amplification-fluorescence in situ hybridization targeting seven different phylogenetic groups: Chlorophyceae, Chrysophyceae, Cryptophyceae, Cercozoa, LKM11, Perkinsozoa (two clades), and Fungi. The abundance of small eukaryotes ranged from 1,692 to 10,782 cells ml(-1). The dominant groups were the Chrysophyceae and the Chlorophyceae, which represented 19.6% and 17.9% of small eukaryotes, respectively. The results also confirmed the quantitative importance of putative parasites, Fungi and Perkinsozoa, in the small heterotrophic eukaryotic assemblage. The relative abundances recorded for the Perkinsozoa group reached as much as 31.6% of total targeted eukaryotes during the summer. The dynamics of Perkinsozoa clade 1 coincided with abundance variations in Peridinium and Ceratium spp. (Dinoflagellates), while the dynamics of Perkinsozoa clade 2 was linked to the presence of Dinobryon spp. (Chrysophyceae). Fungi, represented by chytrids, reached maximal abundance in December (569 cells ml(-1)) and were mainly correlated with the dynamics of diatoms, especially Melosira varians. A further new finding of this study is the recurrent presence of Cercozoa (6.2%) and LKM11 (4.5%) cells. This quantitative approach based on newly designed probes offers a promising means of in-depth analysis of microbial food webs in lakes, especially by revealing the phylogenetic composition of the small heterotrophic flagellate assemblage, for which an important fraction of cells are generally unidentified by classical microscopy (on average, 96.8% of the small heterotrophic flagellates were identified by the specific probes we used in this study).
Assuntos
Biodiversidade , Células Eucarióticas/classificação , Sondas de Oligonucleotídeos/genética , Microbiologia da Água , Hibridização in Situ Fluorescente/métodos , Estações do AnoRESUMO
High-throughput sequencing has given new insights into aquatic fungal community ecology over the last 10 years. Based on 18S ribosomal RNA gene sequences publicly available, we investigated fungal richness and taxonomic composition among 25 lakes and four rivers. We used a single pipeline to process the reads from raw data to the taxonomic affiliation. In addition, we studied, for a subset of lakes, the active fraction of fungi through the 18S rRNA transcripts level. These results revealed a high diversity of fungi that can be captured by 18S rRNA primers. The most OTU-rich groups were Dikarya (47%), represented by putative filamentous fungi more diverse and abundant in freshwater habitats than previous studies have suggested, followed by Cryptomycota (17.6%) and Chytridiomycota (15.4%). The active fraction of the community showed the same dominant groups as those observed at the 18S rRNA genes level. On average 13.25% of the fungal OTUs were active. The small number of OTUs shared among aquatic ecosystems may result from the low abundances of those microorganisms and/or they constitute allochthonous fungi coming from other habitats (e.g., sediment or catchment areas). The richness estimates suggest that fungi have been overlooked and undersampled in freshwater ecosystems, especially rivers, though they play key roles in ecosystem functioning as saprophytes and parasites.
RESUMO
The diversity of small eukaryotes (0.2 to 5 mum) in a mesotrophic lake (Lake Bourget) was investigated using 18S rRNA gene library construction and fluorescent in situ hybridization coupled with tyramide signal amplification (TSA-FISH). Samples collected from the epilimnion on two dates were used to extend a data set previously obtained using similar approaches for lakes with a range of trophic types. A high level of diversity was recorded for this system with intermediate trophic status, and the main sequences from Lake Bourget were affiliated with ciliates (maximum, 19% of the operational taxonomic units [OTUs]), cryptophytes (33%), stramenopiles (13.2%), and cercozoa (9%). Although the comparison of TSA-FISH results and clone libraries suggested that the level of Chlorophyceae may have been underestimated using PCR with 18S rRNA primers, heterotrophic organisms dominated the small-eukaryote assemblage. We found that a large fraction of the sequences belonged to potential parasites of freshwater phytoplankton, including sequences affiliated with fungi and Perkinsozoa. On average, these sequences represented 30% of the OTUs (40% of the clones) obtained for each of two dates for Lake Bourget. Our results provide information on lacustrine small-eukaryote diversity and structure, adding to the phylogenetic data available for lakes with various trophic types.
Assuntos
Biodiversidade , DNA de Algas/genética , DNA Fúngico/genética , DNA de Protozoário/genética , Água Doce/parasitologia , DNA de Algas/química , DNA Fúngico/química , DNA de Protozoário/química , DNA Ribossômico/química , DNA Ribossômico/genética , Hibridização in Situ Fluorescente/métodos , Dados de Sequência Molecular , Filogenia , Fitoplâncton/parasitologia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido NucleicoRESUMO
Small eukaryotes (0.2-5 microm) in hyper-eutrophic conditions were described using terminal restriction fragment length polymorphism and cloning-sequencing, and were related to environmental variables both by an experimental approach and by a temporal field study. In situ analysis showed marked temporal variations in the dominant terminal restriction fragments (T-RFs), which were related to environmental variables such as nutrient concentrations and metazooplankton composition. To monitor the responses of the small-eukaryote community to top-down (absence or presence of planktivorous fish) and bottom-up (low or high nitrogen and phosphorus addition) effects, a cross-classified design mesocosm experiment was used. Depending on the type of treatment, we recorded changes in the diversity of T-RFs, as well as modifications in phylogenetic composition. Centroheliozoa and Cryptophyta were found in all types of treatment, whereas Chlorophyta were specific to enclosures receiving high nutrient loadings, and were associated either with LKM11 and 'environmental sequences'. Cercozoa and Fungi were not detected in enclosures receiving high nutrient loadings and fishes. Our results showed that resources and top-down factors are both clearly involved in shaping the structure of small eukaryotes, not only autotrophs but also heterotrophs, via complex interactions and trophic cascades within a microbial loop, notably in response to nutrient loading.
Assuntos
Células Eucarióticas/metabolismo , Fitoplâncton/metabolismo , Zooplâncton/metabolismo , Animais , Clorofila/metabolismo , Clorofila A , Ecossistema , Células Eucarióticas/classificação , Nitrogênio/metabolismo , Fósforo/metabolismo , Filogenia , Fitoplâncton/classificação , Fitoplâncton/genética , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 18S/genética , Microbiologia da Água , Zooplâncton/classificação , Zooplâncton/genéticaRESUMO
Although they are widespread, diverse and involved in biogeochemical cycles, microbial eukaryotes attract less attention than their prokaryotic counterparts in environmental microbiology. In this study, we used publicly available 18S barcoding data to define biases that may limit such analyses and to gain an overview of the planktonic microbial eukaryotic diversity in freshwater ecosystems. The richness of the microbial eukaryotes was estimated to 100 798 operational taxonomic units (OTUs) delineating 1267 clusters or phylogenetic units (PUs, i.e. monophyletic groups of OTUs that are phylogenetically close). By summing the richness found in aquatic environments, we can predict the microbial eukaryotic richness to be around 200 000-250 000 species. The molecular diversity of protists in freshwater environments is generally higher than that of the morphospecies and cultivated species catalogued in public databases. Amoebozoa, Viridiplantae, Ichthyosporea, and Cryptophyta are the most phylogenetically diverse taxa, and characterisation of these groups is still needed. A network analysis showed that Fungi, Stramenopiles and Viridiplantae play central role in lake ecosystems. Finally, this work provides guidance for compiling metabarcoding data and identifies missing data that should be obtained to increase our knowledge on microbial eukaryote diversity.
Assuntos
Eucariotos/classificação , Plâncton/classificação , Criptófitas/classificação , Ecossistema , Fungos/classificação , Lagos/microbiologia , Filogenia , Estramenópilas/classificaçãoRESUMO
Microbial eukaryotes play a crucial role in ecosystem functioning and oxygen is considered to be one of the strongest barriers against their local dispersal. However, diversity of microbial eukaryotes in freshwater habitats with oxygen gradients has previously received very little attention. We applied high-throughput sequencing (V4 region of the 18S rRNA gene) in conjunction with quantitative PCR (DNA and RNA) and fluorescent in situ hybridization (FISH) analyses, to provide an unique spatio-temporal analysis of microbial eukaryotes diversity and potential activity in a meromictic freshwater lake (lake Pavin). This study revealed a high genetic diversity of unicellular eukaryotes in the permanent anoxic zone of lake Pavin and allowed the discrimination of active vs. inactive components. Forty-two percent of the OTUs (Operational Taxonomic Units) are exclusively present in the monimolimnion, where Alveolata (Ciliophora and Dinophyceae) and Fungi (Dikarya and Chytrids) are the most active phyla and are probably represented by species capable of anaerobic metabolism. Pigmented eukaryotes (Haptophyceae and Chlorophyceae) are also present and active in this zone, which opens up questions regarding their metabolism.
RESUMO
Photosynthetic picoeukaryotes (PPEs) are important components of the marine picophytoplankton community playing a critical role in CO2 fixation but also as bacterivores, particularly in the oligotrophic gyres. Despite an increased interest in these organisms and an improved understanding of the genetic diversity of this group, we still know little of the environmental factors controlling the abundance of these organisms. Here, we investigated the quantitative importance of eukaryotic parasites in the free-living fraction as well as in associations with PPEs along a transect in the South Atlantic. Using tyramide signal amplification-fluorescence in situ hybridization (TSA-FISH), we provide quantitative evidence of the occurrence of free-living fungi in open ocean marine systems, while the Perkinsozoa and Syndiniales parasites were not abundant in these waters. Using flow cytometric cell sorting of different PPE populations followed by a dual-labelled TSA-FISH approach, we also demonstrate fungal associations, potentially parasitic, occurring with both pico-Prymnesiophyceae and pico-Chrysophyceae. These data highlight the necessity for further work investigating the specific role of marine fungi as parasites of phytoplankton to improve understanding of carbon flow in marine ecosystems.
Assuntos
Alveolados/isolamento & purificação , Biodiversidade , Fungos/isolamento & purificação , Interações Hospedeiro-Parasita , Fitoplâncton/microbiologia , Fitoplâncton/parasitologia , Alveolados/genética , Oceano Atlântico , Citometria de Fluxo , Fungos/genética , Hibridização in Situ FluorescenteRESUMO
Distinct distribution patterns of members of the major bacterial clades SAR11, SAR86, and Actinobacteria were observed across a transect from the Marquesas islands through the ultra-oligotrophic South Pacific Gyre into the Chilean upwelling using 16S rRNA gene sequencing and RNA-DNA fingerprinting. Three different Actinobacteria sequence clusters belonging to "Candidatus Actinomarinidae" were localized in the western half of the transect, one was limited to the gyre deep chlorophyll maximum (DCM) and sequences affiliated to the OCS155 clade were unique to the upwelling. The structure of the surface bacterial community was highly correlated with water mass and remained similar across the whole central gyre (1300 nautical miles). The surface hyperoligotrophic gyre was dominated (>70% of all sequences) by highly diverse SAR11 and SAR86 operational taxonomic units and these communities were significantly different from those in the DCM. Analysis of 16S rRNA fingerprints generated from RNA allowed insights into the potential activity of assigned bacterial groups. SAR11 and Prochlorococcus showed the highest potential activity in all water masses except for the upwelling, accounting together for 65% of the total bacterial 16S rRNA in the gyre surface waters in equal proportions whereas the contribution of SAR11 decreased significantly at the DCM.
RESUMO
Heterotrophic bacterioplankton, cyanobacteria and phototrophic picoeukaryotes (< 5 µm in size) numerically dominate planktonic oceanic communities. While feeding on bacterioplankton is often attributed to aplastidic protists, recent evidence suggests that phototrophic picoeukaryotes could be important bacterivores. Here, we present direct visual evidence from the surface mixed layer of the Atlantic Ocean that bacterioplankton are internalized by phototrophic picoeukaryotes. In situ interactions of phototrophic picoeukaryotes and bacterioplankton (specifically Prochlorococcus cyanobacteria and the SAR11 clade) were investigated using a combination of flow cytometric cell sorting and dual tyramide signal amplification fluorescence in situ hybridization. Using this method, we observed plastidic Prymnesiophyceae and Chrysophyceae cells containing Prochlorococcus, and to a lesser extent SAR11 cells. These microscopic observations of in situ microbial trophic interactions demonstrate the frequency and likely selectivity of phototrophic picoeukaryote bacterivory in the surface mixed layer of both the North and South Atlantic subtropical gyres and adjacent equatorial region, broadening our views on the ecological role of the smallest oceanic plastidic protists.